ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stvalg Unicode version

Theorem 1stvalg 6084
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stvalg  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )

Proof of Theorem 1stvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snexg 4144 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
2 dmexg 4847 . . 3  |-  ( { A }  e.  _V  ->  dom  { A }  e.  _V )
3 uniexg 4398 . . 3  |-  ( dom 
{ A }  e.  _V  ->  U. dom  { A }  e.  _V )
41, 2, 33syl 17 . 2  |-  ( A  e.  _V  ->  U. dom  { A }  e.  _V )
5 sneq 3571 . . . . 5  |-  ( x  =  A  ->  { x }  =  { A } )
65dmeqd 4785 . . . 4  |-  ( x  =  A  ->  dom  { x }  =  dom  { A } )
76unieqd 3783 . . 3  |-  ( x  =  A  ->  U. dom  { x }  =  U. dom  { A } )
8 df-1st 6082 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
97, 8fvmptg 5541 . 2  |-  ( ( A  e.  _V  /\  U.
dom  { A }  e.  _V )  ->  ( 1st `  A )  =  U. dom  { A } )
104, 9mpdan 418 1  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   _Vcvv 2712   {csn 3560   U.cuni 3772   dom cdm 4583   ` cfv 5167   1stc1st 6080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-iota 5132  df-fun 5169  df-fv 5175  df-1st 6082
This theorem is referenced by:  1st0  6086  op1st  6088  elxp6  6111
  Copyright terms: Public domain W3C validator