ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stvalg Unicode version

Theorem 1stvalg 6157
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stvalg  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )

Proof of Theorem 1stvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snexg 4196 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
2 dmexg 4903 . . 3  |-  ( { A }  e.  _V  ->  dom  { A }  e.  _V )
3 uniexg 4451 . . 3  |-  ( dom 
{ A }  e.  _V  ->  U. dom  { A }  e.  _V )
41, 2, 33syl 17 . 2  |-  ( A  e.  _V  ->  U. dom  { A }  e.  _V )
5 sneq 3615 . . . . 5  |-  ( x  =  A  ->  { x }  =  { A } )
65dmeqd 4841 . . . 4  |-  ( x  =  A  ->  dom  { x }  =  dom  { A } )
76unieqd 3832 . . 3  |-  ( x  =  A  ->  U. dom  { x }  =  U. dom  { A } )
8 df-1st 6155 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
97, 8fvmptg 5605 . 2  |-  ( ( A  e.  _V  /\  U.
dom  { A }  e.  _V )  ->  ( 1st `  A )  =  U. dom  { A } )
104, 9mpdan 421 1  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   _Vcvv 2749   {csn 3604   U.cuni 3821   dom cdm 4638   ` cfv 5228   1stc1st 6153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fv 5236  df-1st 6155
This theorem is referenced by:  1st0  6159  op1st  6161  elxp6  6184
  Copyright terms: Public domain W3C validator