ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stvalg Unicode version

Theorem 1stvalg 6110
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stvalg  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )

Proof of Theorem 1stvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snexg 4163 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
2 dmexg 4868 . . 3  |-  ( { A }  e.  _V  ->  dom  { A }  e.  _V )
3 uniexg 4417 . . 3  |-  ( dom 
{ A }  e.  _V  ->  U. dom  { A }  e.  _V )
41, 2, 33syl 17 . 2  |-  ( A  e.  _V  ->  U. dom  { A }  e.  _V )
5 sneq 3587 . . . . 5  |-  ( x  =  A  ->  { x }  =  { A } )
65dmeqd 4806 . . . 4  |-  ( x  =  A  ->  dom  { x }  =  dom  { A } )
76unieqd 3800 . . 3  |-  ( x  =  A  ->  U. dom  { x }  =  U. dom  { A } )
8 df-1st 6108 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
97, 8fvmptg 5562 . 2  |-  ( ( A  e.  _V  /\  U.
dom  { A }  e.  _V )  ->  ( 1st `  A )  =  U. dom  { A } )
104, 9mpdan 418 1  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   U.cuni 3789   dom cdm 4604   ` cfv 5188   1stc1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108
This theorem is referenced by:  1st0  6112  op1st  6114  elxp6  6137
  Copyright terms: Public domain W3C validator