ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stvalg Unicode version

Theorem 1stvalg 6251
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stvalg  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )

Proof of Theorem 1stvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snexg 4244 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
2 dmexg 4961 . . 3  |-  ( { A }  e.  _V  ->  dom  { A }  e.  _V )
3 uniexg 4504 . . 3  |-  ( dom 
{ A }  e.  _V  ->  U. dom  { A }  e.  _V )
41, 2, 33syl 17 . 2  |-  ( A  e.  _V  ->  U. dom  { A }  e.  _V )
5 sneq 3654 . . . . 5  |-  ( x  =  A  ->  { x }  =  { A } )
65dmeqd 4899 . . . 4  |-  ( x  =  A  ->  dom  { x }  =  dom  { A } )
76unieqd 3875 . . 3  |-  ( x  =  A  ->  U. dom  { x }  =  U. dom  { A } )
8 df-1st 6249 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
97, 8fvmptg 5678 . 2  |-  ( ( A  e.  _V  /\  U.
dom  { A }  e.  _V )  ->  ( 1st `  A )  =  U. dom  { A } )
104, 9mpdan 421 1  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   U.cuni 3864   dom cdm 4693   ` cfv 5290   1stc1st 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-1st 6249
This theorem is referenced by:  1st0  6253  op1st  6255  elxp6  6278
  Copyright terms: Public domain W3C validator