ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ecoptocl GIF version

Theorem 2ecoptocl 6622
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
2ecoptocl.1 𝑆 = ((𝐶 × 𝐷) / 𝑅)
2ecoptocl.2 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
2ecoptocl.3 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))
2ecoptocl.4 (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)
Assertion
Ref Expression
2ecoptocl ((𝐴𝑆𝐵𝑆) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑧,𝐵,𝑤   𝑥,𝐶,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝑧,𝑆,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝜓,𝑥,𝑦   𝜒,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑧,𝑤)   𝜒(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem 2ecoptocl
StepHypRef Expression
1 2ecoptocl.1 . . 3 𝑆 = ((𝐶 × 𝐷) / 𝑅)
2 2ecoptocl.3 . . . 4 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))
32imbi2d 230 . . 3 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → ((𝐴𝑆𝜓) ↔ (𝐴𝑆𝜒)))
4 2ecoptocl.2 . . . . . 6 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
54imbi2d 230 . . . . 5 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (((𝑧𝐶𝑤𝐷) → 𝜑) ↔ ((𝑧𝐶𝑤𝐷) → 𝜓)))
6 2ecoptocl.4 . . . . . 6 (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)
76ex 115 . . . . 5 ((𝑥𝐶𝑦𝐷) → ((𝑧𝐶𝑤𝐷) → 𝜑))
81, 5, 7ecoptocl 6621 . . . 4 (𝐴𝑆 → ((𝑧𝐶𝑤𝐷) → 𝜓))
98com12 30 . . 3 ((𝑧𝐶𝑤𝐷) → (𝐴𝑆𝜓))
101, 3, 9ecoptocl 6621 . 2 (𝐵𝑆 → (𝐴𝑆𝜒))
1110impcom 125 1 ((𝐴𝑆𝐵𝑆) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  cop 3595   × cxp 4624  [cec 6532   / cqs 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-xp 4632  df-cnv 4634  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-ec 6536  df-qs 6540
This theorem is referenced by:  3ecoptocl  6623  ecovcom  6641  ecovicom  6642  addclnq  7373  mulclnq  7374  nqtri3or  7394  ltexnqq  7406  addclnq0  7449  mulclnq0  7450  distrnq0  7457  mulcomnq0  7458  addassnq0  7460  addclsr  7751  mulclsr  7752  mulgt0sr  7776  aptisr  7777
  Copyright terms: Public domain W3C validator