![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ecoptocl | GIF version |
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
2ecoptocl.1 | ⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅) |
2ecoptocl.2 | ⊢ ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
2ecoptocl.3 | ⊢ ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) |
2ecoptocl.4 | ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) |
Ref | Expression |
---|---|
2ecoptocl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ecoptocl.1 | . . 3 ⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅) | |
2 | 2ecoptocl.3 | . . . 4 ⊢ ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 230 | . . 3 ⊢ ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → ((𝐴 ∈ 𝑆 → 𝜓) ↔ (𝐴 ∈ 𝑆 → 𝜒))) |
4 | 2ecoptocl.2 | . . . . . 6 ⊢ ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | imbi2d 230 | . . . . 5 ⊢ ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑) ↔ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓))) |
6 | 2ecoptocl.4 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) | |
7 | 6 | ex 115 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑)) |
8 | 1, 5, 7 | ecoptocl 6624 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓)) |
9 | 8 | com12 30 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → (𝐴 ∈ 𝑆 → 𝜓)) |
10 | 1, 3, 9 | ecoptocl 6624 | . 2 ⊢ (𝐵 ∈ 𝑆 → (𝐴 ∈ 𝑆 → 𝜒)) |
11 | 10 | impcom 125 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 × cxp 4626 [cec 6535 / cqs 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-ec 6539 df-qs 6543 |
This theorem is referenced by: 3ecoptocl 6626 ecovcom 6644 ecovicom 6645 addclnq 7376 mulclnq 7377 nqtri3or 7397 ltexnqq 7409 addclnq0 7452 mulclnq0 7453 distrnq0 7460 mulcomnq0 7461 addassnq0 7463 addclsr 7754 mulclsr 7755 mulgt0sr 7779 aptisr 7780 |
Copyright terms: Public domain | W3C validator |