ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptisr Unicode version

Theorem aptisr 7769
Description: Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
aptisr  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )

Proof of Theorem aptisr
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7717 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 4003 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  A  <R  [
<. z ,  w >. ]  ~R  ) )
3 breq2 4004 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. x ,  y >. ]  ~R  <->  [ <. z ,  w >. ]  ~R  <R  A ) )
42, 3orbi12d 793 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
54notbid 667 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( -.  ( [
<. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [
<. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  -.  ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
6 eqeq1 2184 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  <->  A  =  [ <. z ,  w >. ]  ~R  ) )
75, 6imbi12d 234 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  )  <->  ( -.  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  ->  A  =  [ <. z ,  w >. ]  ~R  ) ) )
8 breq2 4004 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  <R  [ <. z ,  w >. ]  ~R  <->  A 
<R  B ) )
9 breq1 4003 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  <R  A  <-> 
B  <R  A ) )
108, 9orbi12d 793 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  ( A  <R  B  \/  B  <R  A ) ) )
1110notbid 667 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( -.  ( A 
<R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  -.  ( A  <R  B  \/  B  <R  A ) ) )
12 eqeq2 2187 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  =  [ <. z ,  w >. ]  ~R  <->  A  =  B
) )
1311, 12imbi12d 234 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( -.  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [
<. z ,  w >. ]  ~R  <R  A )  ->  A  =  [ <. z ,  w >. ]  ~R  ) 
<->  ( -.  ( A 
<R  B  \/  B  <R  A )  ->  A  =  B ) ) )
14 addcomprg 7568 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  =  ( z  +P.  y ) )
1514ad2ant2lr 510 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  +P.  z )  =  ( z  +P.  y ) )
16 addcomprg 7568 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  =  ( w  +P.  x ) )
1716ad2ant2rl 511 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  +P.  w )  =  ( w  +P.  x ) )
1815, 17breq12d 4013 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  +P.  z )  <P  ( x  +P.  w
)  <->  ( z  +P.  y )  <P  (
w  +P.  x )
) )
1918orbi2d 790 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  +P.  w
)  <P  ( y  +P.  z )  \/  (
y  +P.  z )  <P  ( x  +P.  w
) )  <->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
2019notbid 667 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) )  <->  -.  (
( x  +P.  w
)  <P  ( y  +P.  z )  \/  (
z  +P.  y )  <P  ( w  +P.  x
) ) ) )
21 addclpr 7527 . . . . . . 7  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  e.  P. )
2221ad2ant2rl 511 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  +P.  w )  e.  P. )
23 addclpr 7527 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  e.  P. )
2423ad2ant2lr 510 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  +P.  z )  e.  P. )
25 aptipr 7631 . . . . . . 7  |-  ( ( ( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P.  /\  -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) ) )  ->  ( x  +P.  w )  =  ( y  +P.  z ) )
26253expia 1205 . . . . . 6  |-  ( ( ( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P. )  ->  ( -.  ( ( x  +P.  w ) 
<P  ( y  +P.  z
)  \/  ( y  +P.  z )  <P 
( x  +P.  w
) )  ->  (
x  +P.  w )  =  ( y  +P.  z ) ) )
2722, 24, 26syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) )  -> 
( x  +P.  w
)  =  ( y  +P.  z ) ) )
2820, 27sylbird 170 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) )  -> 
( x  +P.  w
)  =  ( y  +P.  z ) ) )
29 ltsrprg 7737 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
30 ltsrprg 7737 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
3130ancoms 268 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
3229, 31orbi12d 793 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) ) ) )
3332notbid 667 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  -.  ( ( x  +P.  w )  <P 
( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
34 enreceq 7726 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  =  ( y  +P.  z ) ) )
3528, 33, 343imtr4d 203 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  ) )
361, 7, 13, 352ecoptocl 6617 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( -.  ( A 
<R  B  \/  B  <R  A )  ->  A  =  B ) )
37363impia 1200 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3594   class class class wbr 4000  (class class class)co 5869   [cec 6527   P.cnp 7281    +P. cpp 7283    <P cltp 7285    ~R cer 7286   R.cnr 7287    <R cltr 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-iplp 7458  df-iltp 7460  df-enr 7716  df-nr 7717  df-ltr 7720
This theorem is referenced by:  axpre-apti  7875
  Copyright terms: Public domain W3C validator