ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptisr Unicode version

Theorem aptisr 7474
Description: Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
aptisr  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )

Proof of Theorem aptisr
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7423 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 3878 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  A  <R  [
<. z ,  w >. ]  ~R  ) )
3 breq2 3879 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. x ,  y >. ]  ~R  <->  [ <. z ,  w >. ]  ~R  <R  A ) )
42, 3orbi12d 748 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
54notbid 633 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( -.  ( [
<. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [
<. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  -.  ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
6 eqeq1 2106 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  <->  A  =  [ <. z ,  w >. ]  ~R  ) )
75, 6imbi12d 233 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  )  <->  ( -.  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  ->  A  =  [ <. z ,  w >. ]  ~R  ) ) )
8 breq2 3879 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  <R  [ <. z ,  w >. ]  ~R  <->  A 
<R  B ) )
9 breq1 3878 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  <R  A  <-> 
B  <R  A ) )
108, 9orbi12d 748 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  ( A  <R  B  \/  B  <R  A ) ) )
1110notbid 633 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( -.  ( A 
<R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  -.  ( A  <R  B  \/  B  <R  A ) ) )
12 eqeq2 2109 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  =  [ <. z ,  w >. ]  ~R  <->  A  =  B
) )
1311, 12imbi12d 233 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( -.  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [
<. z ,  w >. ]  ~R  <R  A )  ->  A  =  [ <. z ,  w >. ]  ~R  ) 
<->  ( -.  ( A 
<R  B  \/  B  <R  A )  ->  A  =  B ) ) )
14 addcomprg 7287 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  =  ( z  +P.  y ) )
1514ad2ant2lr 497 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  +P.  z )  =  ( z  +P.  y ) )
16 addcomprg 7287 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  =  ( w  +P.  x ) )
1716ad2ant2rl 498 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  +P.  w )  =  ( w  +P.  x ) )
1815, 17breq12d 3888 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  +P.  z )  <P  ( x  +P.  w
)  <->  ( z  +P.  y )  <P  (
w  +P.  x )
) )
1918orbi2d 745 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  +P.  w
)  <P  ( y  +P.  z )  \/  (
y  +P.  z )  <P  ( x  +P.  w
) )  <->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
2019notbid 633 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) )  <->  -.  (
( x  +P.  w
)  <P  ( y  +P.  z )  \/  (
z  +P.  y )  <P  ( w  +P.  x
) ) ) )
21 addclpr 7246 . . . . . . 7  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  e.  P. )
2221ad2ant2rl 498 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  +P.  w )  e.  P. )
23 addclpr 7246 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  e.  P. )
2423ad2ant2lr 497 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  +P.  z )  e.  P. )
25 aptipr 7350 . . . . . . 7  |-  ( ( ( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P.  /\  -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) ) )  ->  ( x  +P.  w )  =  ( y  +P.  z ) )
26253expia 1151 . . . . . 6  |-  ( ( ( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P. )  ->  ( -.  ( ( x  +P.  w ) 
<P  ( y  +P.  z
)  \/  ( y  +P.  z )  <P 
( x  +P.  w
) )  ->  (
x  +P.  w )  =  ( y  +P.  z ) ) )
2722, 24, 26syl2anc 406 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) )  -> 
( x  +P.  w
)  =  ( y  +P.  z ) ) )
2820, 27sylbird 169 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) )  -> 
( x  +P.  w
)  =  ( y  +P.  z ) ) )
29 ltsrprg 7443 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
30 ltsrprg 7443 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
3130ancoms 266 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
3229, 31orbi12d 748 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) ) ) )
3332notbid 633 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  -.  ( ( x  +P.  w )  <P 
( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
34 enreceq 7432 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  =  ( y  +P.  z ) ) )
3528, 33, 343imtr4d 202 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  ) )
361, 7, 13, 352ecoptocl 6447 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( -.  ( A 
<R  B  \/  B  <R  A )  ->  A  =  B ) )
37363impia 1146 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670    /\ w3a 930    = wceq 1299    e. wcel 1448   <.cop 3477   class class class wbr 3875  (class class class)co 5706   [cec 6357   P.cnp 7000    +P. cpp 7002    <P cltp 7004    ~R cer 7005   R.cnr 7006    <R cltr 7012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-iplp 7177  df-iltp 7179  df-enr 7422  df-nr 7423  df-ltr 7426
This theorem is referenced by:  axpre-apti  7570
  Copyright terms: Public domain W3C validator