ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptisr Unicode version

Theorem aptisr 7587
Description: Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
aptisr  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )

Proof of Theorem aptisr
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7535 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 3932 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  A  <R  [
<. z ,  w >. ]  ~R  ) )
3 breq2 3933 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. x ,  y >. ]  ~R  <->  [ <. z ,  w >. ]  ~R  <R  A ) )
42, 3orbi12d 782 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
54notbid 656 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( -.  ( [
<. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [
<. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  -.  ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
6 eqeq1 2146 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  <->  A  =  [ <. z ,  w >. ]  ~R  ) )
75, 6imbi12d 233 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  )  <->  ( -.  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  ->  A  =  [ <. z ,  w >. ]  ~R  ) ) )
8 breq2 3933 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  <R  [ <. z ,  w >. ]  ~R  <->  A 
<R  B ) )
9 breq1 3932 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  <R  A  <-> 
B  <R  A ) )
108, 9orbi12d 782 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  ( A  <R  B  \/  B  <R  A ) ) )
1110notbid 656 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( -.  ( A 
<R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  -.  ( A  <R  B  \/  B  <R  A ) ) )
12 eqeq2 2149 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  =  [ <. z ,  w >. ]  ~R  <->  A  =  B
) )
1311, 12imbi12d 233 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( -.  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [
<. z ,  w >. ]  ~R  <R  A )  ->  A  =  [ <. z ,  w >. ]  ~R  ) 
<->  ( -.  ( A 
<R  B  \/  B  <R  A )  ->  A  =  B ) ) )
14 addcomprg 7386 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  =  ( z  +P.  y ) )
1514ad2ant2lr 501 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  +P.  z )  =  ( z  +P.  y ) )
16 addcomprg 7386 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  =  ( w  +P.  x ) )
1716ad2ant2rl 502 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  +P.  w )  =  ( w  +P.  x ) )
1815, 17breq12d 3942 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  +P.  z )  <P  ( x  +P.  w
)  <->  ( z  +P.  y )  <P  (
w  +P.  x )
) )
1918orbi2d 779 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  +P.  w
)  <P  ( y  +P.  z )  \/  (
y  +P.  z )  <P  ( x  +P.  w
) )  <->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
2019notbid 656 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) )  <->  -.  (
( x  +P.  w
)  <P  ( y  +P.  z )  \/  (
z  +P.  y )  <P  ( w  +P.  x
) ) ) )
21 addclpr 7345 . . . . . . 7  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  e.  P. )
2221ad2ant2rl 502 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  +P.  w )  e.  P. )
23 addclpr 7345 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  e.  P. )
2423ad2ant2lr 501 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  +P.  z )  e.  P. )
25 aptipr 7449 . . . . . . 7  |-  ( ( ( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P.  /\  -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) ) )  ->  ( x  +P.  w )  =  ( y  +P.  z ) )
26253expia 1183 . . . . . 6  |-  ( ( ( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P. )  ->  ( -.  ( ( x  +P.  w ) 
<P  ( y  +P.  z
)  \/  ( y  +P.  z )  <P 
( x  +P.  w
) )  ->  (
x  +P.  w )  =  ( y  +P.  z ) ) )
2722, 24, 26syl2anc 408 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) )  -> 
( x  +P.  w
)  =  ( y  +P.  z ) ) )
2820, 27sylbird 169 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) )  -> 
( x  +P.  w
)  =  ( y  +P.  z ) ) )
29 ltsrprg 7555 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
30 ltsrprg 7555 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
3130ancoms 266 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
3229, 31orbi12d 782 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) ) ) )
3332notbid 656 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  -.  ( ( x  +P.  w )  <P 
( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
34 enreceq 7544 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  =  ( y  +P.  z ) ) )
3528, 33, 343imtr4d 202 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  ) )
361, 7, 13, 352ecoptocl 6517 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( -.  ( A 
<R  B  \/  B  <R  A )  ->  A  =  B ) )
37363impia 1178 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   <.cop 3530   class class class wbr 3929  (class class class)co 5774   [cec 6427   P.cnp 7099    +P. cpp 7101    <P cltp 7103    ~R cer 7104   R.cnr 7105    <R cltr 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278  df-enr 7534  df-nr 7535  df-ltr 7538
This theorem is referenced by:  axpre-apti  7693
  Copyright terms: Public domain W3C validator