ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclsr Unicode version

Theorem addclsr 7755
Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
Assertion
Ref Expression
addclsr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  R. )

Proof of Theorem addclsr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7729 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5885 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  ( A  +R  [ <. z ,  w >. ]  ~R  ) )
32eleq1d 2246 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
4 oveq2 5886 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  +R  [ <. z ,  w >. ]  ~R  )  =  ( A  +R  B ) )
54eleq1d 2246 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  +R  [
<. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  +R  B )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
6 addsrpr 7747 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  )
7 addclpr 7539 . . . . . . 7  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  +P.  z
)  e.  P. )
8 addclpr 7539 . . . . . . 7  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  +P.  w
)  e.  P. )
97, 8anim12i 338 . . . . . 6  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
109an4s 588 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
11 opelxpi 4660 . . . . 5  |-  ( ( ( x  +P.  z
)  e.  P.  /\  ( y  +P.  w
)  e.  P. )  -> 
<. ( x  +P.  z
) ,  ( y  +P.  w ) >.  e.  ( P.  X.  P. ) )
12 enrex 7739 . . . . . 6  |-  ~R  e.  _V
1312ecelqsi 6592 . . . . 5  |-  ( <.
( x  +P.  z
) ,  ( y  +P.  w ) >.  e.  ( P.  X.  P. )  ->  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
1410, 11, 133syl 17 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
156, 14eqeltrd 2254 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) )
161, 3, 5, 152ecoptocl 6626 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  ( ( P.  X.  P. ) /.  ~R  ) )
1716, 1eleqtrrdi 2271 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   <.cop 3597    X. cxp 4626  (class class class)co 5878   [cec 6536   /.cqs 6537   P.cnp 7293    +P. cpp 7295    ~R cer 7298   R.cnr 7299    +R cplr 7303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-2o 6421  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-pli 7307  df-mi 7308  df-lti 7309  df-plpq 7346  df-mpq 7347  df-enq 7349  df-nqqs 7350  df-plqqs 7351  df-mqqs 7352  df-1nqqs 7353  df-rq 7354  df-ltnqqs 7355  df-enq0 7426  df-nq0 7427  df-0nq0 7428  df-plq0 7429  df-mq0 7430  df-inp 7468  df-iplp 7470  df-enr 7728  df-nr 7729  df-plr 7730
This theorem is referenced by:  ltm1sr  7779  caucvgsrlemoffval  7798  caucvgsrlemofff  7799  caucvgsrlemoffcau  7800  caucvgsrlemoffres  7802  caucvgsr  7804  map2psrprg  7807  suplocsrlemb  7808  suplocsrlem  7810  addcnsr  7836  mulcnsr  7837  addcnsrec  7844  mulcnsrec  7845  axaddcl  7866  axaddrcl  7867  axmulcl  7868  axaddass  7874  axmulass  7875  axdistr  7876
  Copyright terms: Public domain W3C validator