| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndvalg | GIF version | ||
| Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| 2ndvalg | ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 4235 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 2 | rnexg 4951 | . . 3 ⊢ ({𝐴} ∈ V → ran {𝐴} ∈ V) | |
| 3 | uniexg 4493 | . . 3 ⊢ (ran {𝐴} ∈ V → ∪ ran {𝐴} ∈ V) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐴 ∈ V → ∪ ran {𝐴} ∈ V) |
| 5 | sneq 3648 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 6 | 5 | rneqd 4915 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
| 7 | 6 | unieqd 3866 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
| 8 | df-2nd 6239 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 9 | 7, 8 | fvmptg 5667 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ ran {𝐴} ∈ V) → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| 10 | 4, 9 | mpdan 421 | 1 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3637 ∪ cuni 3855 ran crn 4683 ‘cfv 5279 2nd c2nd 6237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-iota 5240 df-fun 5281 df-fv 5287 df-2nd 6239 |
| This theorem is referenced by: 2nd0 6243 op2nd 6245 elxp6 6267 |
| Copyright terms: Public domain | W3C validator |