ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndvalg GIF version

Theorem 2ndvalg 6111
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndvalg (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})

Proof of Theorem 2ndvalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snexg 4163 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
2 rnexg 4869 . . 3 ({𝐴} ∈ V → ran {𝐴} ∈ V)
3 uniexg 4417 . . 3 (ran {𝐴} ∈ V → ran {𝐴} ∈ V)
41, 2, 33syl 17 . 2 (𝐴 ∈ V → ran {𝐴} ∈ V)
5 sneq 3587 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
65rneqd 4833 . . . 4 (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴})
76unieqd 3800 . . 3 (𝑥 = 𝐴 ran {𝑥} = ran {𝐴})
8 df-2nd 6109 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
97, 8fvmptg 5562 . 2 ((𝐴 ∈ V ∧ ran {𝐴} ∈ V) → (2nd𝐴) = ran {𝐴})
104, 9mpdan 418 1 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576   cuni 3789  ran crn 4605  cfv 5188  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-2nd 6109
This theorem is referenced by:  2nd0  6113  op2nd  6115  elxp6  6137
  Copyright terms: Public domain W3C validator