ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndvalg GIF version

Theorem 2ndvalg 6279
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndvalg (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})

Proof of Theorem 2ndvalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snexg 4267 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
2 rnexg 4985 . . 3 ({𝐴} ∈ V → ran {𝐴} ∈ V)
3 uniexg 4527 . . 3 (ran {𝐴} ∈ V → ran {𝐴} ∈ V)
41, 2, 33syl 17 . 2 (𝐴 ∈ V → ran {𝐴} ∈ V)
5 sneq 3677 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
65rneqd 4949 . . . 4 (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴})
76unieqd 3898 . . 3 (𝑥 = 𝐴 ran {𝑥} = ran {𝐴})
8 df-2nd 6277 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
97, 8fvmptg 5703 . 2 ((𝐴 ∈ V ∧ ran {𝐴} ∈ V) → (2nd𝐴) = ran {𝐴})
104, 9mpdan 421 1 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666   cuni 3887  ran crn 4717  cfv 5314  2nd c2nd 6275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fv 5322  df-2nd 6277
This theorem is referenced by:  2nd0  6281  op2nd  6283  elxp6  6305
  Copyright terms: Public domain W3C validator