Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ndvalg | GIF version |
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
2ndvalg | ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 4158 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
2 | rnexg 4864 | . . 3 ⊢ ({𝐴} ∈ V → ran {𝐴} ∈ V) | |
3 | uniexg 4412 | . . 3 ⊢ (ran {𝐴} ∈ V → ∪ ran {𝐴} ∈ V) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐴 ∈ V → ∪ ran {𝐴} ∈ V) |
5 | sneq 3582 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
6 | 5 | rneqd 4828 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
7 | 6 | unieqd 3795 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
8 | df-2nd 6102 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
9 | 7, 8 | fvmptg 5557 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ ran {𝐴} ∈ V) → (2nd ‘𝐴) = ∪ ran {𝐴}) |
10 | 4, 9 | mpdan 418 | 1 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 Vcvv 2722 {csn 3571 ∪ cuni 3784 ran crn 4600 ‘cfv 5183 2nd c2nd 6100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2724 df-sbc 2948 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-iota 5148 df-fun 5185 df-fv 5191 df-2nd 6102 |
This theorem is referenced by: 2nd0 6106 op2nd 6108 elxp6 6130 |
Copyright terms: Public domain | W3C validator |