| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndvalg | GIF version | ||
| Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| 2ndvalg | ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 4267 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 2 | rnexg 4985 | . . 3 ⊢ ({𝐴} ∈ V → ran {𝐴} ∈ V) | |
| 3 | uniexg 4527 | . . 3 ⊢ (ran {𝐴} ∈ V → ∪ ran {𝐴} ∈ V) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐴 ∈ V → ∪ ran {𝐴} ∈ V) |
| 5 | sneq 3677 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 6 | 5 | rneqd 4949 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
| 7 | 6 | unieqd 3898 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
| 8 | df-2nd 6277 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 9 | 7, 8 | fvmptg 5703 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ ran {𝐴} ∈ V) → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| 10 | 4, 9 | mpdan 421 | 1 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 ∪ cuni 3887 ran crn 4717 ‘cfv 5314 2nd c2nd 6275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fv 5322 df-2nd 6277 |
| This theorem is referenced by: 2nd0 6281 op2nd 6283 elxp6 6305 |
| Copyright terms: Public domain | W3C validator |