| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2ndvalg | GIF version | ||
| Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| 2ndvalg | ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snexg 4217 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 2 | rnexg 4931 | . . 3 ⊢ ({𝐴} ∈ V → ran {𝐴} ∈ V) | |
| 3 | uniexg 4474 | . . 3 ⊢ (ran {𝐴} ∈ V → ∪ ran {𝐴} ∈ V) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐴 ∈ V → ∪ ran {𝐴} ∈ V) | 
| 5 | sneq 3633 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 6 | 5 | rneqd 4895 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) | 
| 7 | 6 | unieqd 3850 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) | 
| 8 | df-2nd 6199 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 9 | 7, 8 | fvmptg 5637 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ ran {𝐴} ∈ V) → (2nd ‘𝐴) = ∪ ran {𝐴}) | 
| 10 | 4, 9 | mpdan 421 | 1 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 ∪ cuni 3839 ran crn 4664 ‘cfv 5258 2nd c2nd 6197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-2nd 6199 | 
| This theorem is referenced by: 2nd0 6203 op2nd 6205 elxp6 6227 | 
| Copyright terms: Public domain | W3C validator |