ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndvalg GIF version

Theorem 2ndvalg 6241
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndvalg (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})

Proof of Theorem 2ndvalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snexg 4235 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
2 rnexg 4951 . . 3 ({𝐴} ∈ V → ran {𝐴} ∈ V)
3 uniexg 4493 . . 3 (ran {𝐴} ∈ V → ran {𝐴} ∈ V)
41, 2, 33syl 17 . 2 (𝐴 ∈ V → ran {𝐴} ∈ V)
5 sneq 3648 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
65rneqd 4915 . . . 4 (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴})
76unieqd 3866 . . 3 (𝑥 = 𝐴 ran {𝑥} = ran {𝐴})
8 df-2nd 6239 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
97, 8fvmptg 5667 . 2 ((𝐴 ∈ V ∧ ran {𝐴} ∈ V) → (2nd𝐴) = ran {𝐴})
104, 9mpdan 421 1 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3637   cuni 3855  ran crn 4683  cfv 5279  2nd c2nd 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-iota 5240  df-fun 5281  df-fv 5287  df-2nd 6239
This theorem is referenced by:  2nd0  6243  op2nd  6245  elxp6  6267
  Copyright terms: Public domain W3C validator