ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos2t Unicode version

Theorem cos2t 11700
Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
cos2t  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( 2  x.  ( ( cos `  A
) ^ 2 ) )  -  1 ) )

Proof of Theorem cos2t
StepHypRef Expression
1 coscl 11657 . . . 4  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
21sqcld 10594 . . 3  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  e.  CC )
3 ax-1cn 7854 . . . 4  |-  1  e.  CC
4 subsub3 8138 . . . 4  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  1  e.  CC  /\  ( ( cos `  A ) ^ 2 )  e.  CC )  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
53, 4mp3an2 1320 . . 3  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( cos `  A
) ^ 2 )  e.  CC )  -> 
( ( ( cos `  A ) ^ 2 )  -  ( 1  -  ( ( cos `  A ) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) )  -  1 ) )
62, 2, 5syl2anc 409 . 2  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
7 cosadd 11687 . . . . 5  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( cos `  ( A  +  A )
)  =  ( ( ( cos `  A
)  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  A ) ) ) )
87anidms 395 . . . 4  |-  ( A  e.  CC  ->  ( cos `  ( A  +  A ) )  =  ( ( ( cos `  A )  x.  ( cos `  A ) )  -  ( ( sin `  A )  x.  ( sin `  A ) ) ) )
9 2times 8993 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
109fveq2d 5498 . . . 4  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( cos `  ( A  +  A )
) )
111sqvald 10593 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
12 sincl 11656 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1312sqvald 10593 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
1411, 13oveq12d 5868 . . . 4  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) )  =  ( ( ( cos `  A
)  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  A ) ) ) )
158, 10, 143eqtr4d 2213 . . 3  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( ( cos `  A ) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) ) )
1612sqcld 10594 . . . . . . 7  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  e.  CC )
1716, 2addcomd 8057 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) ) )
18 sincossq 11698 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
1917, 18eqtr3d 2205 . . . . 5  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 )
20 subadd 8109 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( sin `  A
) ^ 2 )  e.  CC )  -> 
( ( 1  -  ( ( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
213, 20mp3an1 1319 . . . . . 6  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( sin `  A
) ^ 2 )  e.  CC )  -> 
( ( 1  -  ( ( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
222, 16, 21syl2anc 409 . . . . 5  |-  ( A  e.  CC  ->  (
( 1  -  (
( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
2319, 22mpbird 166 . . . 4  |-  ( A  e.  CC  ->  (
1  -  ( ( cos `  A ) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 ) )
2423oveq2d 5866 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( cos `  A
) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) ) )
2515, 24eqtr4d 2206 . 2  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( ( cos `  A ) ^ 2 )  -  ( 1  -  ( ( cos `  A ) ^ 2 ) ) ) )
2622timesd 9107 . . 3  |-  ( A  e.  CC  ->  (
2  x.  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) ) )
2726oveq1d 5865 . 2  |-  ( A  e.  CC  ->  (
( 2  x.  (
( cos `  A
) ^ 2 ) )  -  1 )  =  ( ( ( ( cos `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
286, 25, 273eqtr4d 2213 1  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( 2  x.  ( ( cos `  A
) ^ 2 ) )  -  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   ` cfv 5196  (class class class)co 5850   CCcc 7759   1c1 7762    + caddc 7764    x. cmul 7766    - cmin 8077   2c2 8916   ^cexp 10462   sincsin 11594   cosccos 11595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-sup 6957  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-ico 9838  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-fac 10647  df-bc 10669  df-ihash 10697  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304  df-ef 11598  df-sin 11600  df-cos 11601
This theorem is referenced by:  cos2tsin  11701  cos2bnd  11710  sin0pilem1  13455  cospi  13474  cos2pi  13478  tangtx  13512  coskpi  13522
  Copyright terms: Public domain W3C validator