ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos2t Unicode version

Theorem cos2t 11932
Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
cos2t  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( 2  x.  ( ( cos `  A
) ^ 2 ) )  -  1 ) )

Proof of Theorem cos2t
StepHypRef Expression
1 coscl 11889 . . . 4  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
21sqcld 10780 . . 3  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  e.  CC )
3 ax-1cn 7989 . . . 4  |-  1  e.  CC
4 subsub3 8275 . . . 4  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  1  e.  CC  /\  ( ( cos `  A ) ^ 2 )  e.  CC )  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
53, 4mp3an2 1336 . . 3  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( cos `  A
) ^ 2 )  e.  CC )  -> 
( ( ( cos `  A ) ^ 2 )  -  ( 1  -  ( ( cos `  A ) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) )  -  1 ) )
62, 2, 5syl2anc 411 . 2  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
7 cosadd 11919 . . . . 5  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( cos `  ( A  +  A )
)  =  ( ( ( cos `  A
)  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  A ) ) ) )
87anidms 397 . . . 4  |-  ( A  e.  CC  ->  ( cos `  ( A  +  A ) )  =  ( ( ( cos `  A )  x.  ( cos `  A ) )  -  ( ( sin `  A )  x.  ( sin `  A ) ) ) )
9 2times 9135 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
109fveq2d 5565 . . . 4  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( cos `  ( A  +  A )
) )
111sqvald 10779 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
12 sincl 11888 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1312sqvald 10779 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
1411, 13oveq12d 5943 . . . 4  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) )  =  ( ( ( cos `  A
)  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  A ) ) ) )
158, 10, 143eqtr4d 2239 . . 3  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( ( cos `  A ) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) ) )
1612sqcld 10780 . . . . . . 7  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  e.  CC )
1716, 2addcomd 8194 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) ) )
18 sincossq 11930 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
1917, 18eqtr3d 2231 . . . . 5  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 )
20 subadd 8246 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( sin `  A
) ^ 2 )  e.  CC )  -> 
( ( 1  -  ( ( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
213, 20mp3an1 1335 . . . . . 6  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( sin `  A
) ^ 2 )  e.  CC )  -> 
( ( 1  -  ( ( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
222, 16, 21syl2anc 411 . . . . 5  |-  ( A  e.  CC  ->  (
( 1  -  (
( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
2319, 22mpbird 167 . . . 4  |-  ( A  e.  CC  ->  (
1  -  ( ( cos `  A ) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 ) )
2423oveq2d 5941 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( cos `  A
) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) ) )
2515, 24eqtr4d 2232 . 2  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( ( cos `  A ) ^ 2 )  -  ( 1  -  ( ( cos `  A ) ^ 2 ) ) ) )
2622timesd 9251 . . 3  |-  ( A  e.  CC  ->  (
2  x.  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) ) )
2726oveq1d 5940 . 2  |-  ( A  e.  CC  ->  (
( 2  x.  (
( cos `  A
) ^ 2 ) )  -  1 )  =  ( ( ( ( cos `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
286, 25, 273eqtr4d 2239 1  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( 2  x.  ( ( cos `  A
) ^ 2 ) )  -  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    x. cmul 7901    - cmin 8214   2c2 9058   ^cexp 10647   sincsin 11826   cosccos 11827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-sin 11832  df-cos 11833
This theorem is referenced by:  cos2tsin  11933  cos2bnd  11942  sin0pilem1  15101  cospi  15120  cos2pi  15124  tangtx  15158  coskpi  15168
  Copyright terms: Public domain W3C validator