ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsq2 Unicode version

Theorem subsq2 10400
Description: Express the difference of the squares of two numbers as a polynomial in the difference of the numbers. (Contributed by NM, 21-Feb-2008.)
Assertion
Ref Expression
subsq2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( ( A  -  B ) ^ 2 )  +  ( ( 2  x.  B )  x.  ( A  -  B )
) ) )

Proof of Theorem subsq2
StepHypRef Expression
1 2cn 8791 . . . . . . . 8  |-  2  e.  CC
2 mulcl 7747 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
31, 2mpan 420 . . . . . . 7  |-  ( B  e.  CC  ->  (
2  x.  B )  e.  CC )
43adantl 275 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
5 subadd23 7974 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  (
2  x.  B )  e.  CC )  -> 
( ( A  -  B )  +  ( 2  x.  B ) )  =  ( A  +  ( ( 2  x.  B )  -  B ) ) )
64, 5mpd3an3 1316 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  ( 2  x.  B ) )  =  ( A  +  ( ( 2  x.  B )  -  B ) ) )
7 2times 8848 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
87oveq1d 5789 . . . . . . . 8  |-  ( B  e.  CC  ->  (
( 2  x.  B
)  -  B )  =  ( ( B  +  B )  -  B ) )
9 pncan 7968 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  B  e.  CC )  ->  ( ( B  +  B )  -  B
)  =  B )
109anidms 394 . . . . . . . 8  |-  ( B  e.  CC  ->  (
( B  +  B
)  -  B )  =  B )
118, 10eqtrd 2172 . . . . . . 7  |-  ( B  e.  CC  ->  (
( 2  x.  B
)  -  B )  =  B )
1211adantl 275 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  B )  -  B
)  =  B )
1312oveq2d 5790 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( ( 2  x.  B
)  -  B ) )  =  ( A  +  B ) )
146, 13eqtrd 2172 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  ( 2  x.  B ) )  =  ( A  +  B ) )
1514oveq1d 5789 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  -  B )  +  ( 2  x.  B
) )  x.  ( A  -  B )
)  =  ( ( A  +  B )  x.  ( A  -  B ) ) )
16 subcl 7961 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
1716, 4, 16adddird 7791 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  -  B )  +  ( 2  x.  B
) )  x.  ( A  -  B )
)  =  ( ( ( A  -  B
)  x.  ( A  -  B ) )  +  ( ( 2  x.  B )  x.  ( A  -  B
) ) ) )
1815, 17eqtr3d 2174 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  -  B )
)  =  ( ( ( A  -  B
)  x.  ( A  -  B ) )  +  ( ( 2  x.  B )  x.  ( A  -  B
) ) ) )
19 subsq 10399 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
20 sqval 10351 . . . 4  |-  ( ( A  -  B )  e.  CC  ->  (
( A  -  B
) ^ 2 )  =  ( ( A  -  B )  x.  ( A  -  B
) ) )
2116, 20syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( A  -  B )  x.  ( A  -  B ) ) )
2221oveq1d 5789 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  -  B ) ^
2 )  +  ( ( 2  x.  B
)  x.  ( A  -  B ) ) )  =  ( ( ( A  -  B
)  x.  ( A  -  B ) )  +  ( ( 2  x.  B )  x.  ( A  -  B
) ) ) )
2318, 19, 223eqtr4d 2182 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( ( A  -  B ) ^ 2 )  +  ( ( 2  x.  B )  x.  ( A  -  B )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7618    + caddc 7623    x. cmul 7625    - cmin 7933   2c2 8771   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator