ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq Unicode version

Theorem cvgratnnlemseq 12032
Description: Lemma for cvgratnn 12037. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemseq  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M    i, N    ph, i
Allowed substitution hints:    A( i)    M( k)

Proof of Theorem cvgratnnlemseq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9754 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9469 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10700 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
54adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq 1
(  +  ,  F
) : NN --> CC )
6 cvgratnn.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
76adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  NN )
85, 7ffvelcdmd 5770 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
9 eqid 2229 . . . . . . 7  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
106nnzd 9564 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
1110peano2zd 9568 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
12 fveq2 5626 . . . . . . . . 9  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
1312eleq1d 2298 . . . . . . . 8  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
143ralrimiva 2603 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1514adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
166peano2nnd 9121 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  NN )
17 eluznn 9791 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  NN  /\  x  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  x  e.  NN )
1816, 17sylan 283 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  NN )
1913, 15, 18rspcdva 2912 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  CC )
209, 11, 19serf 10700 . . . . . 6  |-  ( ph  ->  seq ( M  + 
1 ) (  +  ,  F ) : ( ZZ>= `  ( M  +  1 ) ) --> CC )
2120adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq ( M  +  1 ) (  +  ,  F
) : ( ZZ>= `  ( M  +  1
) ) --> CC )
2211adantr 276 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  e.  ZZ )
23 cvgratnn.n . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
24 eluzelz 9727 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ZZ )
27 zltp1le 9497 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2810, 25, 27syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2928biimpa 296 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  <_  N )
30 eluz2 9724 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( M  +  1 )  <_  N ) )
3122, 26, 29, 30syl3anbrc 1205 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
3221, 31ffvelcdmd 5770 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq ( M  +  1
) (  +  ,  F ) `  N
)  e.  CC )
338, 32pncan2d 8455 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (
(  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )  -  (  seq 1 (  +  ,  F ) `  M ) )  =  (  seq ( M  +  1 ) (  +  ,  F ) `
 N ) )
34 addcl 8120 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 277 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  +  y )  e.  CC )
36 addass 8125 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
3736adantl 277 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
386, 1eleqtrdi 2322 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
3938adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  ( ZZ>= `  1 )
)
4014ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  A. k  e.  NN  ( F `  k )  e.  CC )
41 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  ( ZZ>= `  1 )
)
4241, 1eleqtrrdi 2323 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  NN )
4313, 40, 42rspcdva 2912 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( F `  x )  e.  CC )
4435, 37, 31, 39, 43seq3split 10705 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  N
)  =  ( (  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) ) )
4544oveq1d 6015 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( ( (  seq 1
(  +  ,  F
) `  M )  +  (  seq ( M  +  1 ) (  +  ,  F
) `  N )
)  -  (  seq 1 (  +  ,  F ) `  M
) ) )
46 eqidd 2230 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  =  ( F `  i ) )
47 fveq2 5626 . . . . . 6  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
4847eleq1d 2298 . . . . 5  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
4914ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5016ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  NN )
51 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  ( ZZ>= `  ( M  +  1 ) ) )
52 eluznn 9791 . . . . . 6  |-  ( ( ( M  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
i  e.  NN )
5350, 51, 52syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  NN )
5448, 49, 53rspcdva 2912 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  e.  CC )
5546, 31, 54fsum3ser 11903 . . 3  |-  ( (
ph  /\  M  <  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )
5633, 45, 553eqtr4d 2272 . 2  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
57 simpr 110 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  =  N )
586nnred 9119 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
5958ltp1d 9073 . . . . . . . 8  |-  ( ph  ->  M  <  ( M  +  1 ) )
6059adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  <  ( M  +  1 ) )
6157, 60eqbrtrrd 4106 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  N  <  ( M  +  1 ) )
6211adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  ( M  +  1 )  e.  ZZ )
6325adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  N  e.  ZZ )
64 fzn 10234 . . . . . . 7  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  ( M  +  1 )  <-> 
( ( M  + 
1 ) ... N
)  =  (/) ) )
6562, 63, 64syl2anc 411 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  ( N  <  ( M  + 
1 )  <->  ( ( M  +  1 ) ... N )  =  (/) ) )
6661, 65mpbid 147 . . . . 5  |-  ( (
ph  /\  M  =  N )  ->  (
( M  +  1 ) ... N )  =  (/) )
6766sumeq1d 11872 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  sum_ i  e.  (/)  ( F `
 i ) )
68 sum0 11894 . . . 4  |-  sum_ i  e.  (/)  ( F `  i )  =  0
6967, 68eqtrdi 2278 . . 3  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  0 )
704, 6ffvelcdmd 5770 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
7170adantr 276 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
7271subidd 8441 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  0 )
7357fveq2d 5630 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  =  (  seq 1 (  +  ,  F ) `  N
) )
7473oveq1d 6015 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( (  seq 1 (  +  ,  F ) `
 N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )
7569, 72, 743eqtr2rd 2269 . 2  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
76 eluzle 9730 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
7723, 76syl 14 . . 3  |-  ( ph  ->  M  <_  N )
78 zleloe 9489 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
7910, 25, 78syl2anc 411 . . 3  |-  ( ph  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
8077, 79mpbid 147 . 2  |-  ( ph  ->  ( M  <  N  \/  M  =  N
) )
8156, 75, 80mpjaodan 803 1  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   (/)c0 3491   class class class wbr 4082   -->wf 5313   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    < clt 8177    <_ cle 8178    - cmin 8313   NNcn 9106   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   abscabs 11503   sum_csu 11859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860
This theorem is referenced by:  cvgratnnlemrate  12036
  Copyright terms: Public domain W3C validator