ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq Unicode version

Theorem cvgratnnlemseq 11691
Description: Lemma for cvgratnn 11696. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemseq  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M    i, N    ph, i
Allowed substitution hints:    A( i)    M( k)

Proof of Theorem cvgratnnlemseq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9637 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9353 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10575 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
54adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq 1
(  +  ,  F
) : NN --> CC )
6 cvgratnn.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
76adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  NN )
85, 7ffvelcdmd 5698 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
9 eqid 2196 . . . . . . 7  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
106nnzd 9447 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
1110peano2zd 9451 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
12 fveq2 5558 . . . . . . . . 9  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
1312eleq1d 2265 . . . . . . . 8  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
143ralrimiva 2570 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1514adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
166peano2nnd 9005 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  NN )
17 eluznn 9674 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  NN  /\  x  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  x  e.  NN )
1816, 17sylan 283 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  NN )
1913, 15, 18rspcdva 2873 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  CC )
209, 11, 19serf 10575 . . . . . 6  |-  ( ph  ->  seq ( M  + 
1 ) (  +  ,  F ) : ( ZZ>= `  ( M  +  1 ) ) --> CC )
2120adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq ( M  +  1 ) (  +  ,  F
) : ( ZZ>= `  ( M  +  1
) ) --> CC )
2211adantr 276 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  e.  ZZ )
23 cvgratnn.n . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
24 eluzelz 9610 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ZZ )
27 zltp1le 9380 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2810, 25, 27syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2928biimpa 296 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  <_  N )
30 eluz2 9607 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( M  +  1 )  <_  N ) )
3122, 26, 29, 30syl3anbrc 1183 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
3221, 31ffvelcdmd 5698 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq ( M  +  1
) (  +  ,  F ) `  N
)  e.  CC )
338, 32pncan2d 8339 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (
(  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )  -  (  seq 1 (  +  ,  F ) `  M ) )  =  (  seq ( M  +  1 ) (  +  ,  F ) `
 N ) )
34 addcl 8004 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 277 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  +  y )  e.  CC )
36 addass 8009 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
3736adantl 277 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
386, 1eleqtrdi 2289 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
3938adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  ( ZZ>= `  1 )
)
4014ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  A. k  e.  NN  ( F `  k )  e.  CC )
41 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  ( ZZ>= `  1 )
)
4241, 1eleqtrrdi 2290 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  NN )
4313, 40, 42rspcdva 2873 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( F `  x )  e.  CC )
4435, 37, 31, 39, 43seq3split 10580 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  N
)  =  ( (  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) ) )
4544oveq1d 5937 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( ( (  seq 1
(  +  ,  F
) `  M )  +  (  seq ( M  +  1 ) (  +  ,  F
) `  N )
)  -  (  seq 1 (  +  ,  F ) `  M
) ) )
46 eqidd 2197 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  =  ( F `  i ) )
47 fveq2 5558 . . . . . 6  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
4847eleq1d 2265 . . . . 5  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
4914ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5016ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  NN )
51 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  ( ZZ>= `  ( M  +  1 ) ) )
52 eluznn 9674 . . . . . 6  |-  ( ( ( M  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
i  e.  NN )
5350, 51, 52syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  NN )
5448, 49, 53rspcdva 2873 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  e.  CC )
5546, 31, 54fsum3ser 11562 . . 3  |-  ( (
ph  /\  M  <  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )
5633, 45, 553eqtr4d 2239 . 2  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
57 simpr 110 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  =  N )
586nnred 9003 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
5958ltp1d 8957 . . . . . . . 8  |-  ( ph  ->  M  <  ( M  +  1 ) )
6059adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  <  ( M  +  1 ) )
6157, 60eqbrtrrd 4057 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  N  <  ( M  +  1 ) )
6211adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  ( M  +  1 )  e.  ZZ )
6325adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  N  e.  ZZ )
64 fzn 10117 . . . . . . 7  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  ( M  +  1 )  <-> 
( ( M  + 
1 ) ... N
)  =  (/) ) )
6562, 63, 64syl2anc 411 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  ( N  <  ( M  + 
1 )  <->  ( ( M  +  1 ) ... N )  =  (/) ) )
6661, 65mpbid 147 . . . . 5  |-  ( (
ph  /\  M  =  N )  ->  (
( M  +  1 ) ... N )  =  (/) )
6766sumeq1d 11531 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  sum_ i  e.  (/)  ( F `
 i ) )
68 sum0 11553 . . . 4  |-  sum_ i  e.  (/)  ( F `  i )  =  0
6967, 68eqtrdi 2245 . . 3  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  0 )
704, 6ffvelcdmd 5698 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
7170adantr 276 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
7271subidd 8325 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  0 )
7357fveq2d 5562 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  =  (  seq 1 (  +  ,  F ) `  N
) )
7473oveq1d 5937 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( (  seq 1 (  +  ,  F ) `
 N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )
7569, 72, 743eqtr2rd 2236 . 2  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
76 eluzle 9613 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
7723, 76syl 14 . . 3  |-  ( ph  ->  M  <_  N )
78 zleloe 9373 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
7910, 25, 78syl2anc 411 . . 3  |-  ( ph  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
8077, 79mpbid 147 . 2  |-  ( ph  ->  ( M  <  N  \/  M  =  N
) )
8156, 75, 80mpjaodan 799 1  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   (/)c0 3450   class class class wbr 4033   -->wf 5254   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   NNcn 8990   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539   abscabs 11162   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  cvgratnnlemrate  11695
  Copyright terms: Public domain W3C validator