ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq Unicode version

Theorem cvgratnnlemseq 11669
Description: Lemma for cvgratnn 11674. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemseq  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M    i, N    ph, i
Allowed substitution hints:    A( i)    M( k)

Proof of Theorem cvgratnnlemseq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9628 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9344 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10554 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
54adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq 1
(  +  ,  F
) : NN --> CC )
6 cvgratnn.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
76adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  NN )
85, 7ffvelcdmd 5694 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
9 eqid 2193 . . . . . . 7  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
106nnzd 9438 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
1110peano2zd 9442 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
12 fveq2 5554 . . . . . . . . 9  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
1312eleq1d 2262 . . . . . . . 8  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
143ralrimiva 2567 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1514adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
166peano2nnd 8997 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  NN )
17 eluznn 9665 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  NN  /\  x  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  x  e.  NN )
1816, 17sylan 283 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  NN )
1913, 15, 18rspcdva 2869 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  CC )
209, 11, 19serf 10554 . . . . . 6  |-  ( ph  ->  seq ( M  + 
1 ) (  +  ,  F ) : ( ZZ>= `  ( M  +  1 ) ) --> CC )
2120adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq ( M  +  1 ) (  +  ,  F
) : ( ZZ>= `  ( M  +  1
) ) --> CC )
2211adantr 276 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  e.  ZZ )
23 cvgratnn.n . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
24 eluzelz 9601 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ZZ )
27 zltp1le 9371 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2810, 25, 27syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2928biimpa 296 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  <_  N )
30 eluz2 9598 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( M  +  1 )  <_  N ) )
3122, 26, 29, 30syl3anbrc 1183 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
3221, 31ffvelcdmd 5694 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq ( M  +  1
) (  +  ,  F ) `  N
)  e.  CC )
338, 32pncan2d 8332 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (
(  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )  -  (  seq 1 (  +  ,  F ) `  M ) )  =  (  seq ( M  +  1 ) (  +  ,  F ) `
 N ) )
34 addcl 7997 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 277 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  +  y )  e.  CC )
36 addass 8002 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
3736adantl 277 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
386, 1eleqtrdi 2286 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
3938adantr 276 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  ( ZZ>= `  1 )
)
4014ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  A. k  e.  NN  ( F `  k )  e.  CC )
41 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  ( ZZ>= `  1 )
)
4241, 1eleqtrrdi 2287 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  NN )
4313, 40, 42rspcdva 2869 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( F `  x )  e.  CC )
4435, 37, 31, 39, 43seq3split 10559 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  N
)  =  ( (  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) ) )
4544oveq1d 5933 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( ( (  seq 1
(  +  ,  F
) `  M )  +  (  seq ( M  +  1 ) (  +  ,  F
) `  N )
)  -  (  seq 1 (  +  ,  F ) `  M
) ) )
46 eqidd 2194 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  =  ( F `  i ) )
47 fveq2 5554 . . . . . 6  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
4847eleq1d 2262 . . . . 5  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
4914ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5016ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  NN )
51 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  ( ZZ>= `  ( M  +  1 ) ) )
52 eluznn 9665 . . . . . 6  |-  ( ( ( M  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
i  e.  NN )
5350, 51, 52syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  NN )
5448, 49, 53rspcdva 2869 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  e.  CC )
5546, 31, 54fsum3ser 11540 . . 3  |-  ( (
ph  /\  M  <  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )
5633, 45, 553eqtr4d 2236 . 2  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
57 simpr 110 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  =  N )
586nnred 8995 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
5958ltp1d 8949 . . . . . . . 8  |-  ( ph  ->  M  <  ( M  +  1 ) )
6059adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  <  ( M  +  1 ) )
6157, 60eqbrtrrd 4053 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  N  <  ( M  +  1 ) )
6211adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  ( M  +  1 )  e.  ZZ )
6325adantr 276 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  N  e.  ZZ )
64 fzn 10108 . . . . . . 7  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  ( M  +  1 )  <-> 
( ( M  + 
1 ) ... N
)  =  (/) ) )
6562, 63, 64syl2anc 411 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  ( N  <  ( M  + 
1 )  <->  ( ( M  +  1 ) ... N )  =  (/) ) )
6661, 65mpbid 147 . . . . 5  |-  ( (
ph  /\  M  =  N )  ->  (
( M  +  1 ) ... N )  =  (/) )
6766sumeq1d 11509 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  sum_ i  e.  (/)  ( F `
 i ) )
68 sum0 11531 . . . 4  |-  sum_ i  e.  (/)  ( F `  i )  =  0
6967, 68eqtrdi 2242 . . 3  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  0 )
704, 6ffvelcdmd 5694 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
7170adantr 276 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
7271subidd 8318 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  0 )
7357fveq2d 5558 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  =  (  seq 1 (  +  ,  F ) `  N
) )
7473oveq1d 5933 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( (  seq 1 (  +  ,  F ) `
 N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )
7569, 72, 743eqtr2rd 2233 . 2  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
76 eluzle 9604 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
7723, 76syl 14 . . 3  |-  ( ph  ->  M  <_  N )
78 zleloe 9364 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
7910, 25, 78syl2anc 411 . . 3  |-  ( ph  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
8077, 79mpbid 147 . 2  |-  ( ph  ->  ( M  <  N  \/  M  =  N
) )
8156, 75, 80mpjaodan 799 1  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   (/)c0 3446   class class class wbr 4029   -->wf 5250   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   NNcn 8982   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518   abscabs 11141   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  cvgratnnlemrate  11673
  Copyright terms: Public domain W3C validator