ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq Unicode version

Theorem cvgratnnlemseq 11288
Description: Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemseq  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M    i, N    ph, i
Allowed substitution hints:    A( i)    M( k)

Proof of Theorem cvgratnnlemseq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9354 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9074 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10240 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
54adantr 274 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq 1
(  +  ,  F
) : NN --> CC )
6 cvgratnn.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
76adantr 274 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  NN )
85, 7ffvelrnd 5549 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
9 eqid 2137 . . . . . . 7  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
106nnzd 9165 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
1110peano2zd 9169 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
12 fveq2 5414 . . . . . . . . 9  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
1312eleq1d 2206 . . . . . . . 8  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
143ralrimiva 2503 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1514adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
166peano2nnd 8728 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  NN )
17 eluznn 9387 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  NN  /\  x  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  x  e.  NN )
1816, 17sylan 281 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  NN )
1913, 15, 18rspcdva 2789 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  CC )
209, 11, 19serf 10240 . . . . . 6  |-  ( ph  ->  seq ( M  + 
1 ) (  +  ,  F ) : ( ZZ>= `  ( M  +  1 ) ) --> CC )
2120adantr 274 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq ( M  +  1 ) (  +  ,  F
) : ( ZZ>= `  ( M  +  1
) ) --> CC )
2211adantr 274 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  e.  ZZ )
23 cvgratnn.n . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
24 eluzelz 9328 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2625adantr 274 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ZZ )
27 zltp1le 9101 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2810, 25, 27syl2anc 408 . . . . . . 7  |-  ( ph  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2928biimpa 294 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  <_  N )
30 eluz2 9325 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( M  +  1 )  <_  N ) )
3122, 26, 29, 30syl3anbrc 1165 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
3221, 31ffvelrnd 5549 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq ( M  +  1
) (  +  ,  F ) `  N
)  e.  CC )
338, 32pncan2d 8068 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (
(  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )  -  (  seq 1 (  +  ,  F ) `  M ) )  =  (  seq ( M  +  1 ) (  +  ,  F ) `
 N ) )
34 addcl 7738 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 275 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  +  y )  e.  CC )
36 addass 7743 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
3736adantl 275 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
386, 1eleqtrdi 2230 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
3938adantr 274 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  ( ZZ>= `  1 )
)
4014ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  A. k  e.  NN  ( F `  k )  e.  CC )
41 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  ( ZZ>= `  1 )
)
4241, 1eleqtrrdi 2231 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  NN )
4313, 40, 42rspcdva 2789 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( F `  x )  e.  CC )
4435, 37, 31, 39, 43seq3split 10245 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  N
)  =  ( (  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) ) )
4544oveq1d 5782 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( ( (  seq 1
(  +  ,  F
) `  M )  +  (  seq ( M  +  1 ) (  +  ,  F
) `  N )
)  -  (  seq 1 (  +  ,  F ) `  M
) ) )
46 eqidd 2138 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  =  ( F `  i ) )
47 fveq2 5414 . . . . . 6  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
4847eleq1d 2206 . . . . 5  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
4914ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5016ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  NN )
51 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  ( ZZ>= `  ( M  +  1 ) ) )
52 eluznn 9387 . . . . . 6  |-  ( ( ( M  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
i  e.  NN )
5350, 51, 52syl2anc 408 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  NN )
5448, 49, 53rspcdva 2789 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  e.  CC )
5546, 31, 54fsum3ser 11159 . . 3  |-  ( (
ph  /\  M  <  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )
5633, 45, 553eqtr4d 2180 . 2  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
57 simpr 109 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  =  N )
586nnred 8726 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
5958ltp1d 8681 . . . . . . . 8  |-  ( ph  ->  M  <  ( M  +  1 ) )
6059adantr 274 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  <  ( M  +  1 ) )
6157, 60eqbrtrrd 3947 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  N  <  ( M  +  1 ) )
6211adantr 274 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  ( M  +  1 )  e.  ZZ )
6325adantr 274 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  N  e.  ZZ )
64 fzn 9815 . . . . . . 7  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  ( M  +  1 )  <-> 
( ( M  + 
1 ) ... N
)  =  (/) ) )
6562, 63, 64syl2anc 408 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  ( N  <  ( M  + 
1 )  <->  ( ( M  +  1 ) ... N )  =  (/) ) )
6661, 65mpbid 146 . . . . 5  |-  ( (
ph  /\  M  =  N )  ->  (
( M  +  1 ) ... N )  =  (/) )
6766sumeq1d 11128 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  sum_ i  e.  (/)  ( F `
 i ) )
68 sum0 11150 . . . 4  |-  sum_ i  e.  (/)  ( F `  i )  =  0
6967, 68syl6eq 2186 . . 3  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  0 )
704, 6ffvelrnd 5549 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
7170adantr 274 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
7271subidd 8054 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  0 )
7357fveq2d 5418 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  =  (  seq 1 (  +  ,  F ) `  N
) )
7473oveq1d 5782 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( (  seq 1 (  +  ,  F ) `
 N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )
7569, 72, 743eqtr2rd 2177 . 2  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
76 eluzle 9331 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
7723, 76syl 14 . . 3  |-  ( ph  ->  M  <_  N )
78 zleloe 9094 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
7910, 25, 78syl2anc 408 . . 3  |-  ( ph  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
8077, 79mpbid 146 . 2  |-  ( ph  ->  ( M  <  N  \/  M  =  N
) )
8156, 75, 80mpjaodan 787 1  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2414   (/)c0 3358   class class class wbr 3924   -->wf 5114   ` cfv 5118  (class class class)co 5767   CCcc 7611   RRcr 7612   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618    < clt 7793    <_ cle 7794    - cmin 7926   NNcn 8713   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783    seqcseq 10211   abscabs 10762   sum_csu 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116
This theorem is referenced by:  cvgratnnlemrate  11292
  Copyright terms: Public domain W3C validator