| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > conjghm | Unicode version | ||
| Description: Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| conjghm.x |
|
| conjghm.p |
|
| conjghm.m |
|
| conjghm.f |
|
| Ref | Expression |
|---|---|
| conjghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x |
. . 3
| |
| 2 | conjghm.p |
. . 3
| |
| 3 | simpl 109 |
. . 3
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | 1, 2 | grpcl 13541 |
. . . . . 6
|
| 6 | 5 | 3expa 1227 |
. . . . 5
|
| 7 | simplr 528 |
. . . . 5
| |
| 8 | conjghm.m |
. . . . . 6
| |
| 9 | 1, 8 | grpsubcl 13613 |
. . . . 5
|
| 10 | 4, 6, 7, 9 | syl3anc 1271 |
. . . 4
|
| 11 | conjghm.f |
. . . 4
| |
| 12 | 10, 11 | fmptd 5789 |
. . 3
|
| 13 | 3 | adantr 276 |
. . . . . 6
|
| 14 | simplr 528 |
. . . . . . . 8
| |
| 15 | simprl 529 |
. . . . . . . 8
| |
| 16 | 1, 2, 13, 14, 15 | grpcld 13547 |
. . . . . . 7
|
| 17 | 1, 8 | grpsubcl 13613 |
. . . . . . 7
|
| 18 | 13, 16, 14, 17 | syl3anc 1271 |
. . . . . 6
|
| 19 | simprr 531 |
. . . . . . 7
| |
| 20 | 1, 8 | grpsubcl 13613 |
. . . . . . 7
|
| 21 | 13, 19, 14, 20 | syl3anc 1271 |
. . . . . 6
|
| 22 | 1, 2 | grpass 13542 |
. . . . . 6
|
| 23 | 13, 18, 14, 21, 22 | syl13anc 1273 |
. . . . 5
|
| 24 | 1, 2, 8 | grpnpcan 13625 |
. . . . . . . 8
|
| 25 | 13, 16, 14, 24 | syl3anc 1271 |
. . . . . . 7
|
| 26 | 25 | oveq1d 6016 |
. . . . . 6
|
| 27 | 1, 2, 8 | grpaddsubass 13623 |
. . . . . . 7
|
| 28 | 13, 16, 19, 14, 27 | syl13anc 1273 |
. . . . . 6
|
| 29 | 1, 2 | grpass 13542 |
. . . . . . . 8
|
| 30 | 13, 14, 15, 19, 29 | syl13anc 1273 |
. . . . . . 7
|
| 31 | 30 | oveq1d 6016 |
. . . . . 6
|
| 32 | 26, 28, 31 | 3eqtr2rd 2269 |
. . . . 5
|
| 33 | 1, 2, 8 | grpaddsubass 13623 |
. . . . . . 7
|
| 34 | 13, 14, 19, 14, 33 | syl13anc 1273 |
. . . . . 6
|
| 35 | 34 | oveq2d 6017 |
. . . . 5
|
| 36 | 23, 32, 35 | 3eqtr4d 2272 |
. . . 4
|
| 37 | oveq2 6009 |
. . . . . 6
| |
| 38 | 37 | oveq1d 6016 |
. . . . 5
|
| 39 | 1, 2, 13, 15, 19 | grpcld 13547 |
. . . . 5
|
| 40 | 1, 2, 13, 14, 39 | grpcld 13547 |
. . . . . 6
|
| 41 | 1, 8 | grpsubcl 13613 |
. . . . . 6
|
| 42 | 13, 40, 14, 41 | syl3anc 1271 |
. . . . 5
|
| 43 | 11, 38, 39, 42 | fvmptd3 5728 |
. . . 4
|
| 44 | oveq2 6009 |
. . . . . . 7
| |
| 45 | 44 | oveq1d 6016 |
. . . . . 6
|
| 46 | 11, 45, 15, 18 | fvmptd3 5728 |
. . . . 5
|
| 47 | oveq2 6009 |
. . . . . . 7
| |
| 48 | 47 | oveq1d 6016 |
. . . . . 6
|
| 49 | 1, 2, 13, 14, 19 | grpcld 13547 |
. . . . . . 7
|
| 50 | 1, 8 | grpsubcl 13613 |
. . . . . . 7
|
| 51 | 13, 49, 14, 50 | syl3anc 1271 |
. . . . . 6
|
| 52 | 11, 48, 19, 51 | fvmptd3 5728 |
. . . . 5
|
| 53 | 46, 52 | oveq12d 6019 |
. . . 4
|
| 54 | 36, 43, 53 | 3eqtr4d 2272 |
. . 3
|
| 55 | 1, 1, 2, 2, 3, 3, 12, 54 | isghmd 13789 |
. 2
|
| 56 | 3 | adantr 276 |
. . . 4
|
| 57 | eqid 2229 |
. . . . . 6
| |
| 58 | 1, 57 | grpinvcl 13581 |
. . . . 5
|
| 59 | 58 | adantr 276 |
. . . 4
|
| 60 | simpr 110 |
. . . . 5
| |
| 61 | simplr 528 |
. . . . 5
| |
| 62 | 1, 2, 56, 60, 61 | grpcld 13547 |
. . . 4
|
| 63 | 1, 2, 56, 59, 62 | grpcld 13547 |
. . 3
|
| 64 | 3 | adantr 276 |
. . . . . 6
|
| 65 | 62 | adantrl 478 |
. . . . . 6
|
| 66 | 6 | adantrr 479 |
. . . . . 6
|
| 67 | 58 | adantr 276 |
. . . . . 6
|
| 68 | 1, 2 | grplcan 13595 |
. . . . . 6
|
| 69 | 64, 65, 66, 67, 68 | syl13anc 1273 |
. . . . 5
|
| 70 | eqid 2229 |
. . . . . . . . . 10
| |
| 71 | 1, 2, 70, 57 | grplinv 13583 |
. . . . . . . . 9
|
| 72 | 71 | adantr 276 |
. . . . . . . 8
|
| 73 | 72 | oveq1d 6016 |
. . . . . . 7
|
| 74 | simplr 528 |
. . . . . . . 8
| |
| 75 | simprl 529 |
. . . . . . . 8
| |
| 76 | 1, 2 | grpass 13542 |
. . . . . . . 8
|
| 77 | 64, 67, 74, 75, 76 | syl13anc 1273 |
. . . . . . 7
|
| 78 | 1, 2, 70 | grplid 13564 |
. . . . . . . 8
|
| 79 | 78 | ad2ant2r 509 |
. . . . . . 7
|
| 80 | 73, 77, 79 | 3eqtr3rd 2271 |
. . . . . 6
|
| 81 | 80 | eqeq2d 2241 |
. . . . 5
|
| 82 | simprr 531 |
. . . . . 6
| |
| 83 | 1, 2, 8 | grpsubadd 13621 |
. . . . . 6
|
| 84 | 64, 66, 74, 82, 83 | syl13anc 1273 |
. . . . 5
|
| 85 | 69, 81, 84 | 3bitr4d 220 |
. . . 4
|
| 86 | eqcom 2231 |
. . . 4
| |
| 87 | eqcom 2231 |
. . . 4
| |
| 88 | 85, 86, 87 | 3bitr4g 223 |
. . 3
|
| 89 | 11, 10, 63, 88 | f1o2d 6211 |
. 2
|
| 90 | 55, 89 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-sbg 13538 df-ghm 13778 |
| This theorem is referenced by: conjsubg 13814 conjsubgen 13815 |
| Copyright terms: Public domain | W3C validator |