| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > conjghm | Unicode version | ||
| Description: Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| conjghm.x |
|
| conjghm.p |
|
| conjghm.m |
|
| conjghm.f |
|
| Ref | Expression |
|---|---|
| conjghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x |
. . 3
| |
| 2 | conjghm.p |
. . 3
| |
| 3 | simpl 109 |
. . 3
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | 1, 2 | grpcl 13140 |
. . . . . 6
|
| 6 | 5 | 3expa 1205 |
. . . . 5
|
| 7 | simplr 528 |
. . . . 5
| |
| 8 | conjghm.m |
. . . . . 6
| |
| 9 | 1, 8 | grpsubcl 13212 |
. . . . 5
|
| 10 | 4, 6, 7, 9 | syl3anc 1249 |
. . . 4
|
| 11 | conjghm.f |
. . . 4
| |
| 12 | 10, 11 | fmptd 5716 |
. . 3
|
| 13 | 3 | adantr 276 |
. . . . . 6
|
| 14 | simplr 528 |
. . . . . . . 8
| |
| 15 | simprl 529 |
. . . . . . . 8
| |
| 16 | 1, 2, 13, 14, 15 | grpcld 13146 |
. . . . . . 7
|
| 17 | 1, 8 | grpsubcl 13212 |
. . . . . . 7
|
| 18 | 13, 16, 14, 17 | syl3anc 1249 |
. . . . . 6
|
| 19 | simprr 531 |
. . . . . . 7
| |
| 20 | 1, 8 | grpsubcl 13212 |
. . . . . . 7
|
| 21 | 13, 19, 14, 20 | syl3anc 1249 |
. . . . . 6
|
| 22 | 1, 2 | grpass 13141 |
. . . . . 6
|
| 23 | 13, 18, 14, 21, 22 | syl13anc 1251 |
. . . . 5
|
| 24 | 1, 2, 8 | grpnpcan 13224 |
. . . . . . . 8
|
| 25 | 13, 16, 14, 24 | syl3anc 1249 |
. . . . . . 7
|
| 26 | 25 | oveq1d 5937 |
. . . . . 6
|
| 27 | 1, 2, 8 | grpaddsubass 13222 |
. . . . . . 7
|
| 28 | 13, 16, 19, 14, 27 | syl13anc 1251 |
. . . . . 6
|
| 29 | 1, 2 | grpass 13141 |
. . . . . . . 8
|
| 30 | 13, 14, 15, 19, 29 | syl13anc 1251 |
. . . . . . 7
|
| 31 | 30 | oveq1d 5937 |
. . . . . 6
|
| 32 | 26, 28, 31 | 3eqtr2rd 2236 |
. . . . 5
|
| 33 | 1, 2, 8 | grpaddsubass 13222 |
. . . . . . 7
|
| 34 | 13, 14, 19, 14, 33 | syl13anc 1251 |
. . . . . 6
|
| 35 | 34 | oveq2d 5938 |
. . . . 5
|
| 36 | 23, 32, 35 | 3eqtr4d 2239 |
. . . 4
|
| 37 | oveq2 5930 |
. . . . . 6
| |
| 38 | 37 | oveq1d 5937 |
. . . . 5
|
| 39 | 1, 2, 13, 15, 19 | grpcld 13146 |
. . . . 5
|
| 40 | 1, 2, 13, 14, 39 | grpcld 13146 |
. . . . . 6
|
| 41 | 1, 8 | grpsubcl 13212 |
. . . . . 6
|
| 42 | 13, 40, 14, 41 | syl3anc 1249 |
. . . . 5
|
| 43 | 11, 38, 39, 42 | fvmptd3 5655 |
. . . 4
|
| 44 | oveq2 5930 |
. . . . . . 7
| |
| 45 | 44 | oveq1d 5937 |
. . . . . 6
|
| 46 | 11, 45, 15, 18 | fvmptd3 5655 |
. . . . 5
|
| 47 | oveq2 5930 |
. . . . . . 7
| |
| 48 | 47 | oveq1d 5937 |
. . . . . 6
|
| 49 | 1, 2, 13, 14, 19 | grpcld 13146 |
. . . . . . 7
|
| 50 | 1, 8 | grpsubcl 13212 |
. . . . . . 7
|
| 51 | 13, 49, 14, 50 | syl3anc 1249 |
. . . . . 6
|
| 52 | 11, 48, 19, 51 | fvmptd3 5655 |
. . . . 5
|
| 53 | 46, 52 | oveq12d 5940 |
. . . 4
|
| 54 | 36, 43, 53 | 3eqtr4d 2239 |
. . 3
|
| 55 | 1, 1, 2, 2, 3, 3, 12, 54 | isghmd 13382 |
. 2
|
| 56 | 3 | adantr 276 |
. . . 4
|
| 57 | eqid 2196 |
. . . . . 6
| |
| 58 | 1, 57 | grpinvcl 13180 |
. . . . 5
|
| 59 | 58 | adantr 276 |
. . . 4
|
| 60 | simpr 110 |
. . . . 5
| |
| 61 | simplr 528 |
. . . . 5
| |
| 62 | 1, 2, 56, 60, 61 | grpcld 13146 |
. . . 4
|
| 63 | 1, 2, 56, 59, 62 | grpcld 13146 |
. . 3
|
| 64 | 3 | adantr 276 |
. . . . . 6
|
| 65 | 62 | adantrl 478 |
. . . . . 6
|
| 66 | 6 | adantrr 479 |
. . . . . 6
|
| 67 | 58 | adantr 276 |
. . . . . 6
|
| 68 | 1, 2 | grplcan 13194 |
. . . . . 6
|
| 69 | 64, 65, 66, 67, 68 | syl13anc 1251 |
. . . . 5
|
| 70 | eqid 2196 |
. . . . . . . . . 10
| |
| 71 | 1, 2, 70, 57 | grplinv 13182 |
. . . . . . . . 9
|
| 72 | 71 | adantr 276 |
. . . . . . . 8
|
| 73 | 72 | oveq1d 5937 |
. . . . . . 7
|
| 74 | simplr 528 |
. . . . . . . 8
| |
| 75 | simprl 529 |
. . . . . . . 8
| |
| 76 | 1, 2 | grpass 13141 |
. . . . . . . 8
|
| 77 | 64, 67, 74, 75, 76 | syl13anc 1251 |
. . . . . . 7
|
| 78 | 1, 2, 70 | grplid 13163 |
. . . . . . . 8
|
| 79 | 78 | ad2ant2r 509 |
. . . . . . 7
|
| 80 | 73, 77, 79 | 3eqtr3rd 2238 |
. . . . . 6
|
| 81 | 80 | eqeq2d 2208 |
. . . . 5
|
| 82 | simprr 531 |
. . . . . 6
| |
| 83 | 1, 2, 8 | grpsubadd 13220 |
. . . . . 6
|
| 84 | 64, 66, 74, 82, 83 | syl13anc 1251 |
. . . . 5
|
| 85 | 69, 81, 84 | 3bitr4d 220 |
. . . 4
|
| 86 | eqcom 2198 |
. . . 4
| |
| 87 | eqcom 2198 |
. . . 4
| |
| 88 | 85, 86, 87 | 3bitr4g 223 |
. . 3
|
| 89 | 11, 10, 63, 88 | f1o2d 6128 |
. 2
|
| 90 | 55, 89 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-ghm 13371 |
| This theorem is referenced by: conjsubg 13407 conjsubgen 13408 |
| Copyright terms: Public domain | W3C validator |