ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjghm Unicode version

Theorem conjghm 13727
Description: Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjghm.f  |-  F  =  ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )
Assertion
Ref Expression
conjghm  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F  e.  ( G  GrpHom  G )  /\  F : X -1-1-onto-> X ) )
Distinct variable groups:    x,  .-    x,  .+    x, A    x, G    x, X
Allowed substitution hint:    F( x)

Proof of Theorem conjghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conjghm.x . . 3  |-  X  =  ( Base `  G
)
2 conjghm.p . . 3  |-  .+  =  ( +g  `  G )
3 simpl 109 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  G  e.  Grp )
43adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  X
)  ->  G  e.  Grp )
51, 2grpcl 13455 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  x  e.  X )  ->  ( A  .+  x
)  e.  X )
653expa 1206 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  X
)  ->  ( A  .+  x )  e.  X
)
7 simplr 528 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  X
)  ->  A  e.  X )
8 conjghm.m . . . . . 6  |-  .-  =  ( -g `  G )
91, 8grpsubcl 13527 . . . . 5  |-  ( ( G  e.  Grp  /\  ( A  .+  x )  e.  X  /\  A  e.  X )  ->  (
( A  .+  x
)  .-  A )  e.  X )
104, 6, 7, 9syl3anc 1250 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  X
)  ->  ( ( A  .+  x )  .-  A )  e.  X
)
11 conjghm.f . . . 4  |-  F  =  ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )
1210, 11fmptd 5757 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F : X --> X )
133adantr 276 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  ->  G  e.  Grp )
14 simplr 528 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  ->  A  e.  X )
15 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
161, 2, 13, 14, 15grpcld 13461 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( A  .+  y
)  e.  X )
171, 8grpsubcl 13527 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( A  .+  y )  e.  X  /\  A  e.  X )  ->  (
( A  .+  y
)  .-  A )  e.  X )
1813, 16, 14, 17syl3anc 1250 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  y )  .-  A
)  e.  X )
19 simprr 531 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
201, 8grpsubcl 13527 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  X  /\  A  e.  X )  ->  ( z  .-  A
)  e.  X )
2113, 19, 14, 20syl3anc 1250 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( z  .-  A
)  e.  X )
221, 2grpass 13456 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( A 
.+  y )  .-  A )  e.  X  /\  A  e.  X  /\  ( z  .-  A
)  e.  X ) )  ->  ( (
( ( A  .+  y )  .-  A
)  .+  A )  .+  ( z  .-  A
) )  =  ( ( ( A  .+  y )  .-  A
)  .+  ( A  .+  ( z  .-  A
) ) ) )
2313, 18, 14, 21, 22syl13anc 1252 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( ( A  .+  y ) 
.-  A )  .+  A )  .+  (
z  .-  A )
)  =  ( ( ( A  .+  y
)  .-  A )  .+  ( A  .+  (
z  .-  A )
) ) )
241, 2, 8grpnpcan 13539 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( A  .+  y )  e.  X  /\  A  e.  X )  ->  (
( ( A  .+  y )  .-  A
)  .+  A )  =  ( A  .+  y ) )
2513, 16, 14, 24syl3anc 1250 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( A 
.+  y )  .-  A )  .+  A
)  =  ( A 
.+  y ) )
2625oveq1d 5982 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( ( A  .+  y ) 
.-  A )  .+  A )  .+  (
z  .-  A )
)  =  ( ( A  .+  y ) 
.+  ( z  .-  A ) ) )
271, 2, 8grpaddsubass 13537 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( A  .+  y )  e.  X  /\  z  e.  X  /\  A  e.  X
) )  ->  (
( ( A  .+  y )  .+  z
)  .-  A )  =  ( ( A 
.+  y )  .+  ( z  .-  A
) ) )
2813, 16, 19, 14, 27syl13anc 1252 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( A 
.+  y )  .+  z )  .-  A
)  =  ( ( A  .+  y ) 
.+  ( z  .-  A ) ) )
291, 2grpass 13456 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  y  e.  X  /\  z  e.  X
) )  ->  (
( A  .+  y
)  .+  z )  =  ( A  .+  ( y  .+  z
) ) )
3013, 14, 15, 19, 29syl13anc 1252 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  y )  .+  z
)  =  ( A 
.+  ( y  .+  z ) ) )
3130oveq1d 5982 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( A 
.+  y )  .+  z )  .-  A
)  =  ( ( A  .+  ( y 
.+  z ) ) 
.-  A ) )
3226, 28, 313eqtr2rd 2247 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  ( y  .+  z
) )  .-  A
)  =  ( ( ( ( A  .+  y )  .-  A
)  .+  A )  .+  ( z  .-  A
) ) )
331, 2, 8grpaddsubass 13537 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  z  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  z
)  .-  A )  =  ( A  .+  ( z  .-  A
) ) )
3413, 14, 19, 14, 33syl13anc 1252 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  z )  .-  A
)  =  ( A 
.+  ( z  .-  A ) ) )
3534oveq2d 5983 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( A 
.+  y )  .-  A )  .+  (
( A  .+  z
)  .-  A )
)  =  ( ( ( A  .+  y
)  .-  A )  .+  ( A  .+  (
z  .-  A )
) ) )
3623, 32, 353eqtr4d 2250 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  ( y  .+  z
) )  .-  A
)  =  ( ( ( A  .+  y
)  .-  A )  .+  ( ( A  .+  z )  .-  A
) ) )
37 oveq2 5975 . . . . . 6  |-  ( x  =  ( y  .+  z )  ->  ( A  .+  x )  =  ( A  .+  (
y  .+  z )
) )
3837oveq1d 5982 . . . . 5  |-  ( x  =  ( y  .+  z )  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  ( y  .+  z ) )  .-  A ) )
391, 2, 13, 15, 19grpcld 13461 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y  .+  z
)  e.  X )
401, 2, 13, 14, 39grpcld 13461 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( A  .+  (
y  .+  z )
)  e.  X )
411, 8grpsubcl 13527 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( A  .+  ( y 
.+  z ) )  e.  X  /\  A  e.  X )  ->  (
( A  .+  (
y  .+  z )
)  .-  A )  e.  X )
4213, 40, 14, 41syl3anc 1250 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  ( y  .+  z
) )  .-  A
)  e.  X )
4311, 38, 39, 42fvmptd3 5696 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y  .+  z )
)  =  ( ( A  .+  ( y 
.+  z ) ) 
.-  A ) )
44 oveq2 5975 . . . . . . 7  |-  ( x  =  y  ->  ( A  .+  x )  =  ( A  .+  y
) )
4544oveq1d 5982 . . . . . 6  |-  ( x  =  y  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  y )  .-  A ) )
4611, 45, 15, 18fvmptd3 5696 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  ( ( A  .+  y ) 
.-  A ) )
47 oveq2 5975 . . . . . . 7  |-  ( x  =  z  ->  ( A  .+  x )  =  ( A  .+  z
) )
4847oveq1d 5982 . . . . . 6  |-  ( x  =  z  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  z )  .-  A ) )
491, 2, 13, 14, 19grpcld 13461 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( A  .+  z
)  e.  X )
501, 8grpsubcl 13527 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( A  .+  z )  e.  X  /\  A  e.  X )  ->  (
( A  .+  z
)  .-  A )  e.  X )
5113, 49, 14, 50syl3anc 1250 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  z )  .-  A
)  e.  X )
5211, 48, 19, 51fvmptd3 5696 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  ( ( A  .+  z ) 
.-  A ) )
5346, 52oveq12d 5985 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y )  .+  ( F `  z )
)  =  ( ( ( A  .+  y
)  .-  A )  .+  ( ( A  .+  z )  .-  A
) ) )
5436, 43, 533eqtr4d 2250 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y  .+  z )
)  =  ( ( F `  y ) 
.+  ( F `  z ) ) )
551, 1, 2, 2, 3, 3, 12, 54isghmd 13703 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F  e.  ( G 
GrpHom  G ) )
563adantr 276 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  G  e.  Grp )
57 eqid 2207 . . . . . 6  |-  ( invg `  G )  =  ( invg `  G )
581, 57grpinvcl 13495 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
5958adantr 276 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( ( invg `  G ) `
 A )  e.  X )
60 simpr 110 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  y  e.  X )
61 simplr 528 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  A  e.  X )
621, 2, 56, 60, 61grpcld 13461 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( y  .+  A )  e.  X
)
631, 2, 56, 59, 62grpcld 13461 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( (
( invg `  G ) `  A
)  .+  ( y  .+  A ) )  e.  X )
643adantr 276 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  G  e.  Grp )
6562adantrl 478 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( y  .+  A
)  e.  X )
666adantrr 479 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A  .+  x
)  e.  X )
6758adantr 276 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( invg `  G ) `  A
)  e.  X )
681, 2grplcan 13509 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( y  .+  A )  e.  X  /\  ( A  .+  x
)  e.  X  /\  ( ( invg `  G ) `  A
)  e.  X ) )  ->  ( (
( ( invg `  G ) `  A
)  .+  ( y  .+  A ) )  =  ( ( ( invg `  G ) `
 A )  .+  ( A  .+  x ) )  <->  ( y  .+  A )  =  ( A  .+  x ) ) )
6964, 65, 66, 67, 68syl13anc 1252 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  ( y  .+  A
) )  =  ( ( ( invg `  G ) `  A
)  .+  ( A  .+  x ) )  <->  ( y  .+  A )  =  ( A  .+  x ) ) )
70 eqid 2207 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
711, 2, 70, 57grplinv 13497 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( invg `  G ) `
 A )  .+  A )  =  ( 0g `  G ) )
7271adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( invg `  G ) `
 A )  .+  A )  =  ( 0g `  G ) )
7372oveq1d 5982 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  A )  .+  x
)  =  ( ( 0g `  G ) 
.+  x ) )
74 simplr 528 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  A  e.  X )
75 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
761, 2grpass 13456 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 A )  e.  X  /\  A  e.  X  /\  x  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  A )  .+  x
)  =  ( ( ( invg `  G ) `  A
)  .+  ( A  .+  x ) ) )
7764, 67, 74, 75, 76syl13anc 1252 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  A )  .+  x
)  =  ( ( ( invg `  G ) `  A
)  .+  ( A  .+  x ) ) )
781, 2, 70grplid 13478 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( 0g `  G )  .+  x
)  =  x )
7978ad2ant2r 509 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( 0g `  G )  .+  x
)  =  x )
8073, 77, 793eqtr3rd 2249 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  =  ( (
( invg `  G ) `  A
)  .+  ( A  .+  x ) ) )
8180eqeq2d 2219 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  ( y  .+  A
) )  =  x  <-> 
( ( ( invg `  G ) `
 A )  .+  ( y  .+  A
) )  =  ( ( ( invg `  G ) `  A
)  .+  ( A  .+  x ) ) ) )
82 simprr 531 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
y  e.  X )
831, 2, 8grpsubadd 13535 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( A  .+  x )  e.  X  /\  A  e.  X  /\  y  e.  X
) )  ->  (
( ( A  .+  x )  .-  A
)  =  y  <->  ( y  .+  A )  =  ( A  .+  x ) ) )
8464, 66, 74, 82, 83syl13anc 1252 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( A 
.+  x )  .-  A )  =  y  <-> 
( y  .+  A
)  =  ( A 
.+  x ) ) )
8569, 81, 843bitr4d 220 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  ( y  .+  A
) )  =  x  <-> 
( ( A  .+  x )  .-  A
)  =  y ) )
86 eqcom 2209 . . . 4  |-  ( x  =  ( ( ( invg `  G
) `  A )  .+  ( y  .+  A
) )  <->  ( (
( invg `  G ) `  A
)  .+  ( y  .+  A ) )  =  x )
87 eqcom 2209 . . . 4  |-  ( y  =  ( ( A 
.+  x )  .-  A )  <->  ( ( A  .+  x )  .-  A )  =  y )
8885, 86, 873bitr4g 223 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x  =  ( ( ( invg `  G ) `  A
)  .+  ( y  .+  A ) )  <->  y  =  ( ( A  .+  x )  .-  A
) ) )
8911, 10, 63, 88f1o2d 6174 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F : X -1-1-onto-> X )
9055, 89jca 306 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F  e.  ( G  GrpHom  G )  /\  F : X -1-1-onto-> X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    |-> cmpt 4121   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447   invgcminusg 13448   -gcsg 13449    GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-ghm 13692
This theorem is referenced by:  conjsubg  13728  conjsubgen  13729
  Copyright terms: Public domain W3C validator