ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem15 Unicode version

Theorem 4sqlem15 12440
Description: Lemma for 4sq 12445. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
4sq.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
4sq.a  |-  ( ph  ->  A  e.  ZZ )
4sq.b  |-  ( ph  ->  B  e.  ZZ )
4sq.c  |-  ( ph  ->  C  e.  ZZ )
4sq.d  |-  ( ph  ->  D  e.  ZZ )
4sq.e  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.f  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.g  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.h  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.r  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
4sq.p  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
Assertion
Ref Expression
4sqlem15  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  =  0 )  /\  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  =  0 ) ) )
Distinct variable groups:    n, N    P, i, n, w, x, y, z    S, i, n    T, i    ph, i, n
Allowed substitution hints:    ph( x, y, z, w)    A( x, y, z, w, i, n)    B( x, y, z, w, i, n)    C( x, y, z, w, i, n)    D( x, y, z, w, i, n)    R( x, y, z, w, i, n)    S( x, y, z, w)    T( x, y, z, w, n)    E( x, y, z, w, i, n)    F( x, y, z, w, i, n)    G( x, y, z, w, i, n)    H( x, y, z, w, i, n)    M( x, y, z, w, i, n)    N( x, y, z, w, i)

Proof of Theorem 4sqlem15
StepHypRef Expression
1 4sq.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2 eluz2nn 9598 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  NN )
31, 2syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  NN )
43nnred 8963 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
54resqcld 10714 . . . . . . . . . 10  |-  ( ph  ->  ( M ^ 2 )  e.  RR )
65rehalfcld 9196 . . . . . . . . 9  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  RR )
76rehalfcld 9196 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  RR )
87recnd 8017 . . . . . . 7  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  CC )
9 4sq.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
10 4sq.e . . . . . . . . . . . 12  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
119, 3, 104sqlem5 12417 . . . . . . . . . . 11  |-  ( ph  ->  ( E  e.  ZZ  /\  ( ( A  -  E )  /  M
)  e.  ZZ ) )
1211simpld 112 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ZZ )
13 zsqcl 10625 . . . . . . . . . 10  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e.  ZZ )
1412, 13syl 14 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  e.  ZZ )
1514zred 9406 . . . . . . . 8  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
1615recnd 8017 . . . . . . 7  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
17 4sq.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
18 4sq.f . . . . . . . . . . . 12  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1917, 3, 184sqlem5 12417 . . . . . . . . . . 11  |-  ( ph  ->  ( F  e.  ZZ  /\  ( ( B  -  F )  /  M
)  e.  ZZ ) )
2019simpld 112 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
21 zsqcl 10625 . . . . . . . . . 10  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e.  ZZ )
2220, 21syl 14 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  e.  ZZ )
2322zred 9406 . . . . . . . 8  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
2423recnd 8017 . . . . . . 7  |-  ( ph  ->  ( F ^ 2 )  e.  CC )
258, 8, 16, 24addsub4d 8346 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  +  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( F ^ 2 ) ) ) )
266recnd 8017 . . . . . . . 8  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  CC )
27262halvesd 9195 . . . . . . 7  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  +  ( ( ( M ^
2 )  /  2
)  /  2 ) )  =  ( ( M ^ 2 )  /  2 ) )
2827oveq1d 5912 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  +  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
2925, 28eqtr3d 2224 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  +  ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( F ^
2 ) ) )  =  ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
3029adantr 276 . . . 4  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( F ^ 2 ) ) )  =  ( ( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) ) )
315recnd 8017 . . . . . . . . . 10  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
32312halvesd 9195 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  +  ( ( M ^ 2 )  /  2 ) )  =  ( M ^ 2 ) )
3332adantr 276 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  +  ( ( M ^ 2 )  /  2 ) )  =  ( M ^
2 ) )
344recnd 8017 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  CC )
3534sqvald 10685 . . . . . . . . . 10  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
3635adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  =  ( M  x.  M
) )
37 4sq.r . . . . . . . . . . 11  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
38 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  R  =  M )
3937, 38eqtr3id 2236 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  =  M )
4039oveq1d 5912 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  x.  M )  =  ( M  x.  M ) )
4115, 23readdcld 8018 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR )
42 4sq.c . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  C  e.  ZZ )
43 4sq.g . . . . . . . . . . . . . . . . . 18  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4442, 3, 434sqlem5 12417 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G  e.  ZZ  /\  ( ( C  -  G )  /  M
)  e.  ZZ ) )
4544simpld 112 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e.  ZZ )
46 zsqcl 10625 . . . . . . . . . . . . . . . 16  |-  ( G  e.  ZZ  ->  ( G ^ 2 )  e.  ZZ )
4745, 46syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G ^ 2 )  e.  ZZ )
4847zred 9406 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( G ^ 2 )  e.  RR )
49 4sq.d . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  D  e.  ZZ )
50 4sq.h . . . . . . . . . . . . . . . . . 18  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
5149, 3, 504sqlem5 12417 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( H  e.  ZZ  /\  ( ( D  -  H )  /  M
)  e.  ZZ ) )
5251simpld 112 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  H  e.  ZZ )
53 zsqcl 10625 . . . . . . . . . . . . . . . 16  |-  ( H  e.  ZZ  ->  ( H ^ 2 )  e.  ZZ )
5452, 53syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( H ^ 2 )  e.  ZZ )
5554zred 9406 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( H ^ 2 )  e.  RR )
5648, 55readdcld 8018 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  RR )
5741, 56readdcld 8018 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR )
5857recnd 8017 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  CC )
593nnap0d 8996 . . . . . . . . . . 11  |-  ( ph  ->  M #  0 )
6058, 34, 59divcanap1d 8779 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  x.  M
)  =  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
6160adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  x.  M )  =  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) )
6236, 40, 613eqtr2rd 2229 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  =  ( M ^
2 ) )
6333, 62oveq12d 5915 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  +  ( ( M ^ 2 )  /  2 ) )  -  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  ( ( M ^ 2 )  -  ( M ^ 2 ) ) )
6441recnd 8017 . . . . . . . . 9  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  CC )
6556recnd 8017 . . . . . . . . 9  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  CC )
6626, 26, 64, 65addsub4d 8346 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  +  ( ( M ^
2 )  /  2
) )  -  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )  =  ( ( ( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  +  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) ) )
6766adantr 276 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  +  ( ( M ^ 2 )  /  2 ) )  -  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  ( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  +  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) ) )
6831subidd 8287 . . . . . . . 8  |-  ( ph  ->  ( ( M ^
2 )  -  ( M ^ 2 ) )  =  0 )
6968adantr 276 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( M ^ 2 )  -  ( M ^ 2 ) )  =  0 )
7063, 67, 693eqtr3d 2230 . . . . . 6  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  +  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  0 )
716, 41resubcld 8369 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  e.  RR )
729, 3, 104sqlem7 12419 . . . . . . . . . . 11  |-  ( ph  ->  ( E ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
7317, 3, 184sqlem7 12419 . . . . . . . . . . 11  |-  ( ph  ->  ( F ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
7415, 23, 7, 7, 72, 73le2addd 8551 . . . . . . . . . 10  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
7574, 27breqtrd 4044 . . . . . . . . 9  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
766, 41subge0d 8523 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  (
( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  <-> 
( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) ) )
7775, 76mpbird 167 . . . . . . . 8  |-  ( ph  ->  0  <_  ( (
( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
786, 56resubcld 8369 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR )
7942, 3, 434sqlem7 12419 . . . . . . . . . . 11  |-  ( ph  ->  ( G ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
8049, 3, 504sqlem7 12419 . . . . . . . . . . 11  |-  ( ph  ->  ( H ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
8148, 55, 7, 7, 79, 80le2addd 8551 . . . . . . . . . 10  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
8281, 27breqtrd 4044 . . . . . . . . 9  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
836, 56subge0d 8523 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  (
( ( M ^
2 )  /  2
)  -  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  <-> 
( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) ) )
8482, 83mpbird 167 . . . . . . . 8  |-  ( ph  ->  0  <_  ( (
( M ^ 2 )  /  2 )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
85 add20 8462 . . . . . . . 8  |-  ( ( ( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  e.  RR  /\  0  <_  ( (
( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )  /\  ( ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR  /\  0  <_ 
( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) ) )  -> 
( ( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  +  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  0  <-> 
( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  =  0  /\  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  =  0 ) ) )
8671, 77, 78, 84, 85syl22anc 1250 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  +  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  0  <-> 
( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  =  0  /\  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  =  0 ) ) )
8786biimpa 296 . . . . . 6  |-  ( (
ph  /\  ( (
( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  +  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) )  =  0 )  ->  (
( ( ( M ^ 2 )  / 
2 )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  0  /\  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  0 ) )
8870, 87syldan 282 . . . . 5  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  0  /\  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  0 ) )
8988simpld 112 . . . 4  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  =  0 )
9030, 89eqtrd 2222 . . 3  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( F ^ 2 ) ) )  =  0 )
917, 15resubcld 8369 . . . . 5  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  e.  RR )
927, 15subge0d 8523 . . . . . 6  |-  ( ph  ->  ( 0  <_  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  <-> 
( E ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) ) )
9372, 92mpbird 167 . . . . 5  |-  ( ph  ->  0  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  -  ( E ^
2 ) ) )
947, 23resubcld 8369 . . . . 5  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  e.  RR )
957, 23subge0d 8523 . . . . . 6  |-  ( ph  ->  ( 0  <_  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  <-> 
( F ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) ) )
9673, 95mpbird 167 . . . . 5  |-  ( ph  ->  0  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  -  ( F ^
2 ) ) )
97 add20 8462 . . . . 5  |-  ( ( ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  e.  RR  /\  0  <_  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) ) )  /\  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  e.  RR  /\  0  <_  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) ) ) )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  +  ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( F ^
2 ) ) )  =  0  <->  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) ) )
9891, 93, 94, 96, 97syl22anc 1250 . . . 4  |-  ( ph  ->  ( ( ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( E ^
2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) ) )  =  0  <->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) ) )
9998biimpa 296 . . 3  |-  ( (
ph  /\  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( F ^ 2 ) ) )  =  0 )  ->  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) )
10090, 99syldan 282 . 2  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) )
10148recnd 8017 . . . . . . 7  |-  ( ph  ->  ( G ^ 2 )  e.  CC )
10255recnd 8017 . . . . . . 7  |-  ( ph  ->  ( H ^ 2 )  e.  CC )
1038, 8, 101, 102addsub4d 8346 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  +  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  ( ( ( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( H ^ 2 ) ) ) )
10427oveq1d 5912 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  +  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
105103, 104eqtr3d 2224 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  +  ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( H ^
2 ) ) )  =  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) )
106105adantr 276 . . . 4  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( H ^ 2 ) ) )  =  ( ( ( M ^
2 )  /  2
)  -  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )
10788simprd 114 . . . 4  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  -  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  =  0 )
108106, 107eqtrd 2222 . . 3  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( H ^ 2 ) ) )  =  0 )
1097, 48resubcld 8369 . . . . 5  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  e.  RR )
1107, 48subge0d 8523 . . . . . 6  |-  ( ph  ->  ( 0  <_  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  <-> 
( G ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) ) )
11179, 110mpbird 167 . . . . 5  |-  ( ph  ->  0  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  -  ( G ^
2 ) ) )
1127, 55resubcld 8369 . . . . 5  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  e.  RR )
1137, 55subge0d 8523 . . . . . 6  |-  ( ph  ->  ( 0  <_  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  <-> 
( H ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) ) )
11480, 113mpbird 167 . . . . 5  |-  ( ph  ->  0  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  -  ( H ^
2 ) ) )
115 add20 8462 . . . . 5  |-  ( ( ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  e.  RR  /\  0  <_  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) ) )  /\  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  e.  RR  /\  0  <_  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) ) ) )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  +  ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( H ^
2 ) ) )  =  0  <->  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) ) )
116109, 111, 112, 114, 115syl22anc 1250 . . . 4  |-  ( ph  ->  ( ( ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( G ^
2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) ) )  =  0  <->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) ) )
117116biimpa 296 . . 3  |-  ( (
ph  /\  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( H ^ 2 ) ) )  =  0 )  ->  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) )
118108, 117syldan 282 . 2  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) )
119100, 118jca 306 1  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  =  0 )  /\  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   E.wrex 2469   {crab 2472    C_ wss 3144   class class class wbr 4018   ` cfv 5235  (class class class)co 5897  infcinf 7013   RRcr 7841   0cc0 7842   1c1 7843    + caddc 7845    x. cmul 7847    < clt 8023    <_ cle 8024    - cmin 8159    / cdiv 8660   NNcn 8950   2c2 9001   ZZcz 9284   ZZ>=cuz 9559   ...cfz 10040    mod cmo 10355   ^cexp 10553   Primecprime 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043
This theorem is referenced by:  4sqlem16  12441
  Copyright terms: Public domain W3C validator