ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnegmod Unicode version

Theorem qnegmod 10371
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
qnegmod  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( -u A  mod  N )  =  ( ( N  -  A )  mod 
N ) )

Proof of Theorem qnegmod
StepHypRef Expression
1 qcn 9636 . . . . . 6  |-  ( N  e.  QQ  ->  N  e.  CC )
213ad2ant2 1019 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  N  e.  CC )
3 qcn 9636 . . . . . 6  |-  ( A  e.  QQ  ->  A  e.  CC )
433ad2ant1 1018 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  A  e.  CC )
52, 4negsubd 8276 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( N  +  -u A )  =  ( N  -  A ) )
65eqcomd 2183 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( N  -  A )  =  ( N  +  -u A ) )
76oveq1d 5892 . 2  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( N  -  A
)  mod  N )  =  ( ( N  +  -u A )  mod 
N ) )
82mulid2d 7978 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
1  x.  N )  =  N )
98oveq1d 5892 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( 1  x.  N
)  +  -u A
)  =  ( N  +  -u A ) )
109oveq1d 5892 . 2  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( ( 1  x.  N )  +  -u A )  mod  N
)  =  ( ( N  +  -u A
)  mod  N )
)
11 1cnd 7975 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  1  e.  CC )
1211, 2mulcld 7980 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
1  x.  N )  e.  CC )
13 qnegcl 9638 . . . . . . 7  |-  ( A  e.  QQ  ->  -u A  e.  QQ )
14 qcn 9636 . . . . . . 7  |-  ( -u A  e.  QQ  ->  -u A  e.  CC )
1513, 14syl 14 . . . . . 6  |-  ( A  e.  QQ  ->  -u A  e.  CC )
16153ad2ant1 1018 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  -u A  e.  CC )
1712, 16addcomd 8110 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( 1  x.  N
)  +  -u A
)  =  ( -u A  +  ( 1  x.  N ) ) )
1817oveq1d 5892 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( ( 1  x.  N )  +  -u A )  mod  N
)  =  ( (
-u A  +  ( 1  x.  N ) )  mod  N ) )
19133ad2ant1 1018 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  -u A  e.  QQ )
20 1zzd 9282 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  1  e.  ZZ )
21 simp2 998 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  N  e.  QQ )
22 simp3 999 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  0  <  N )
23 modqcyc 10361 . . . 4  |-  ( ( ( -u A  e.  QQ  /\  1  e.  ZZ )  /\  ( N  e.  QQ  /\  0  <  N ) )  -> 
( ( -u A  +  ( 1  x.  N ) )  mod 
N )  =  (
-u A  mod  N
) )
2419, 20, 21, 22, 23syl22anc 1239 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( -u A  +  ( 1  x.  N ) )  mod  N )  =  ( -u A  mod  N ) )
2518, 24eqtrd 2210 . 2  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( ( 1  x.  N )  +  -u A )  mod  N
)  =  ( -u A  mod  N ) )
267, 10, 253eqtr2rd 2217 1  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( -u A  mod  N )  =  ( ( N  -  A )  mod 
N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    - cmin 8130   -ucneg 8131   ZZcz 9255   QQcq 9621    mod cmo 10324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-q 9622  df-rp 9656  df-fl 10272  df-mod 10325
This theorem is referenced by:  m1modnnsub1  10372
  Copyright terms: Public domain W3C validator