| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > geo2sum | Unicode version | ||
| Description: The value of the finite
geometric series  | 
| Ref | Expression | 
|---|---|
| geo2sum | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1zzd 9353 | 
. . 3
 | |
| 2 | nnz 9345 | 
. . . 4
 | |
| 3 | 2 | adantr 276 | 
. . 3
 | 
| 4 | simplr 528 | 
. . . 4
 | |
| 5 | 2nn 9152 | 
. . . . . 6
 | |
| 6 | elfznn 10129 | 
. . . . . . . 8
 | |
| 7 | 6 | adantl 277 | 
. . . . . . 7
 | 
| 8 | 7 | nnnn0d 9302 | 
. . . . . 6
 | 
| 9 | nnexpcl 10644 | 
. . . . . 6
 | |
| 10 | 5, 8, 9 | sylancr 414 | 
. . . . 5
 | 
| 11 | 10 | nncnd 9004 | 
. . . 4
 | 
| 12 | 10 | nnap0d 9036 | 
. . . 4
 | 
| 13 | 4, 11, 12 | divclapd 8817 | 
. . 3
 | 
| 14 | oveq2 5930 | 
. . . 4
 | |
| 15 | 14 | oveq2d 5938 | 
. . 3
 | 
| 16 | 1, 1, 3, 13, 15 | fsumshftm 11610 | 
. 2
 | 
| 17 | 1m1e0 9059 | 
. . . . 5
 | |
| 18 | 17 | oveq1i 5932 | 
. . . 4
 | 
| 19 | 18 | sumeq1i 11528 | 
. . 3
 | 
| 20 | halfcn 9205 | 
. . . . . . . . . 10
 | |
| 21 | elfznn0 10189 | 
. . . . . . . . . . 11
 | |
| 22 | 21 | adantl 277 | 
. . . . . . . . . 10
 | 
| 23 | expcl 10649 | 
. . . . . . . . . 10
 | |
| 24 | 20, 22, 23 | sylancr 414 | 
. . . . . . . . 9
 | 
| 25 | 2cnd 9063 | 
. . . . . . . . 9
 | |
| 26 | 2ap0 9083 | 
. . . . . . . . . 10
 | |
| 27 | 26 | a1i 9 | 
. . . . . . . . 9
 | 
| 28 | 24, 25, 27 | divrecapd 8820 | 
. . . . . . . 8
 | 
| 29 | expp1 10638 | 
. . . . . . . . 9
 | |
| 30 | 20, 22, 29 | sylancr 414 | 
. . . . . . . 8
 | 
| 31 | elfzelz 10100 | 
. . . . . . . . . . 11
 | |
| 32 | 31 | peano2zd 9451 | 
. . . . . . . . . 10
 | 
| 33 | 32 | adantl 277 | 
. . . . . . . . 9
 | 
| 34 | 25, 27, 33 | exprecapd 10773 | 
. . . . . . . 8
 | 
| 35 | 28, 30, 34 | 3eqtr2rd 2236 | 
. . . . . . 7
 | 
| 36 | 35 | oveq2d 5938 | 
. . . . . 6
 | 
| 37 | simplr 528 | 
. . . . . . 7
 | |
| 38 | peano2nn0 9289 | 
. . . . . . . . . 10
 | |
| 39 | 22, 38 | syl 14 | 
. . . . . . . . 9
 | 
| 40 | nnexpcl 10644 | 
. . . . . . . . 9
 | |
| 41 | 5, 39, 40 | sylancr 414 | 
. . . . . . . 8
 | 
| 42 | 41 | nncnd 9004 | 
. . . . . . 7
 | 
| 43 | 41 | nnap0d 9036 | 
. . . . . . 7
 | 
| 44 | 37, 42, 43 | divrecapd 8820 | 
. . . . . 6
 | 
| 45 | 24, 37, 25, 27 | div12apd 8854 | 
. . . . . 6
 | 
| 46 | 36, 44, 45 | 3eqtr4d 2239 | 
. . . . 5
 | 
| 47 | 46 | sumeq2dv 11533 | 
. . . 4
 | 
| 48 | 0zd 9338 | 
. . . . . 6
 | |
| 49 | 3, 1 | zsubcld 9453 | 
. . . . . 6
 | 
| 50 | 48, 49 | fzfigd 10523 | 
. . . . 5
 | 
| 51 | halfcl 9217 | 
. . . . . 6
 | |
| 52 | 51 | adantl 277 | 
. . . . 5
 | 
| 53 | 50, 52, 24 | fsummulc1 11614 | 
. . . 4
 | 
| 54 | 47, 53 | eqtr4d 2232 | 
. . 3
 | 
| 55 | 19, 54 | eqtrid 2241 | 
. 2
 | 
| 56 | 2cnd 9063 | 
. . . . . . . 8
 | |
| 57 | 26 | a1i 9 | 
. . . . . . . 8
 | 
| 58 | 56, 57, 3 | exprecapd 10773 | 
. . . . . . 7
 | 
| 59 | 58 | oveq2d 5938 | 
. . . . . 6
 | 
| 60 | 1mhlfehlf 9209 | 
. . . . . . 7
 | |
| 61 | 60 | a1i 9 | 
. . . . . 6
 | 
| 62 | 59, 61 | oveq12d 5940 | 
. . . . 5
 | 
| 63 | simpr 110 | 
. . . . . 6
 | |
| 64 | 63, 56, 57 | divrecap2d 8821 | 
. . . . 5
 | 
| 65 | 62, 64 | oveq12d 5940 | 
. . . 4
 | 
| 66 | ax-1cn 7972 | 
. . . . . . 7
 | |
| 67 | nnnn0 9256 | 
. . . . . . . . . . 11
 | |
| 68 | 67 | adantr 276 | 
. . . . . . . . . 10
 | 
| 69 | nnexpcl 10644 | 
. . . . . . . . . 10
 | |
| 70 | 5, 68, 69 | sylancr 414 | 
. . . . . . . . 9
 | 
| 71 | 70 | nnrecred 9037 | 
. . . . . . . 8
 | 
| 72 | 71 | recnd 8055 | 
. . . . . . 7
 | 
| 73 | subcl 8225 | 
. . . . . . 7
 | |
| 74 | 66, 72, 73 | sylancr 414 | 
. . . . . 6
 | 
| 75 | 20 | a1i 9 | 
. . . . . 6
 | 
| 76 | 56, 57 | recap0d 8809 | 
. . . . . 6
 | 
| 77 | 74, 75, 76 | divclapd 8817 | 
. . . . 5
 | 
| 78 | 77, 75, 63 | mulassd 8050 | 
. . . 4
 | 
| 79 | 74, 75, 76 | divcanap1d 8818 | 
. . . . 5
 | 
| 80 | 79 | oveq1d 5937 | 
. . . 4
 | 
| 81 | 65, 78, 80 | 3eqtr2d 2235 | 
. . 3
 | 
| 82 | halfre 9204 | 
. . . . . . 7
 | |
| 83 | 1re 8025 | 
. . . . . . 7
 | |
| 84 | halflt1 9208 | 
. . . . . . 7
 | |
| 85 | 82, 83, 84 | ltapii 8662 | 
. . . . . 6
 | 
| 86 | 85 | a1i 9 | 
. . . . 5
 | 
| 87 | 75, 86, 68 | geoserap 11672 | 
. . . 4
 | 
| 88 | 87 | oveq1d 5937 | 
. . 3
 | 
| 89 | mullid 8024 | 
. . . . . . 7
 | |
| 90 | 89 | adantl 277 | 
. . . . . 6
 | 
| 91 | 90 | eqcomd 2202 | 
. . . . 5
 | 
| 92 | 70 | nncnd 9004 | 
. . . . . 6
 | 
| 93 | 70 | nnap0d 9036 | 
. . . . . 6
 | 
| 94 | 63, 92, 93 | divrecap2d 8821 | 
. . . . 5
 | 
| 95 | 91, 94 | oveq12d 5940 | 
. . . 4
 | 
| 96 | 66 | a1i 9 | 
. . . . 5
 | 
| 97 | 96, 72, 63 | subdird 8441 | 
. . . 4
 | 
| 98 | 95, 97 | eqtr4d 2232 | 
. . 3
 | 
| 99 | 81, 88, 98 | 3eqtr4d 2239 | 
. 2
 | 
| 100 | 16, 55, 99 | 3eqtrd 2233 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 | 
| This theorem is referenced by: geo2lim 11681 trilpolemlt1 15685 | 
| Copyright terms: Public domain | W3C validator |