Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > geo2sum | Unicode version |
Description: The value of the finite geometric series ... , multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geo2sum |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1zzd 9188 | . . 3 | |
2 | nnz 9180 | . . . 4 | |
3 | 2 | adantr 274 | . . 3 |
4 | simplr 520 | . . . 4 | |
5 | 2nn 8988 | . . . . . 6 | |
6 | elfznn 9949 | . . . . . . . 8 | |
7 | 6 | adantl 275 | . . . . . . 7 |
8 | 7 | nnnn0d 9137 | . . . . . 6 |
9 | nnexpcl 10425 | . . . . . 6 | |
10 | 5, 8, 9 | sylancr 411 | . . . . 5 |
11 | 10 | nncnd 8841 | . . . 4 |
12 | 10 | nnap0d 8873 | . . . 4 # |
13 | 4, 11, 12 | divclapd 8657 | . . 3 |
14 | oveq2 5829 | . . . 4 | |
15 | 14 | oveq2d 5837 | . . 3 |
16 | 1, 1, 3, 13, 15 | fsumshftm 11335 | . 2 |
17 | 1m1e0 8896 | . . . . 5 | |
18 | 17 | oveq1i 5831 | . . . 4 |
19 | 18 | sumeq1i 11253 | . . 3 |
20 | halfcn 9041 | . . . . . . . . . 10 | |
21 | elfznn0 10009 | . . . . . . . . . . 11 | |
22 | 21 | adantl 275 | . . . . . . . . . 10 |
23 | expcl 10430 | . . . . . . . . . 10 | |
24 | 20, 22, 23 | sylancr 411 | . . . . . . . . 9 |
25 | 2cnd 8900 | . . . . . . . . 9 | |
26 | 2ap0 8920 | . . . . . . . . . 10 # | |
27 | 26 | a1i 9 | . . . . . . . . 9 # |
28 | 24, 25, 27 | divrecapd 8660 | . . . . . . . 8 |
29 | expp1 10419 | . . . . . . . . 9 | |
30 | 20, 22, 29 | sylancr 411 | . . . . . . . 8 |
31 | elfzelz 9921 | . . . . . . . . . . 11 | |
32 | 31 | peano2zd 9283 | . . . . . . . . . 10 |
33 | 32 | adantl 275 | . . . . . . . . 9 |
34 | 25, 27, 33 | exprecapd 10552 | . . . . . . . 8 |
35 | 28, 30, 34 | 3eqtr2rd 2197 | . . . . . . 7 |
36 | 35 | oveq2d 5837 | . . . . . 6 |
37 | simplr 520 | . . . . . . 7 | |
38 | peano2nn0 9124 | . . . . . . . . . 10 | |
39 | 22, 38 | syl 14 | . . . . . . . . 9 |
40 | nnexpcl 10425 | . . . . . . . . 9 | |
41 | 5, 39, 40 | sylancr 411 | . . . . . . . 8 |
42 | 41 | nncnd 8841 | . . . . . . 7 |
43 | 41 | nnap0d 8873 | . . . . . . 7 # |
44 | 37, 42, 43 | divrecapd 8660 | . . . . . 6 |
45 | 24, 37, 25, 27 | div12apd 8694 | . . . . . 6 |
46 | 36, 44, 45 | 3eqtr4d 2200 | . . . . 5 |
47 | 46 | sumeq2dv 11258 | . . . 4 |
48 | 0zd 9173 | . . . . . 6 | |
49 | 3, 1 | zsubcld 9285 | . . . . . 6 |
50 | 48, 49 | fzfigd 10323 | . . . . 5 |
51 | halfcl 9053 | . . . . . 6 | |
52 | 51 | adantl 275 | . . . . 5 |
53 | 50, 52, 24 | fsummulc1 11339 | . . . 4 |
54 | 47, 53 | eqtr4d 2193 | . . 3 |
55 | 19, 54 | syl5eq 2202 | . 2 |
56 | 2cnd 8900 | . . . . . . . 8 | |
57 | 26 | a1i 9 | . . . . . . . 8 # |
58 | 56, 57, 3 | exprecapd 10552 | . . . . . . 7 |
59 | 58 | oveq2d 5837 | . . . . . 6 |
60 | 1mhlfehlf 9045 | . . . . . . 7 | |
61 | 60 | a1i 9 | . . . . . 6 |
62 | 59, 61 | oveq12d 5839 | . . . . 5 |
63 | simpr 109 | . . . . . 6 | |
64 | 63, 56, 57 | divrecap2d 8661 | . . . . 5 |
65 | 62, 64 | oveq12d 5839 | . . . 4 |
66 | ax-1cn 7819 | . . . . . . 7 | |
67 | nnnn0 9091 | . . . . . . . . . . 11 | |
68 | 67 | adantr 274 | . . . . . . . . . 10 |
69 | nnexpcl 10425 | . . . . . . . . . 10 | |
70 | 5, 68, 69 | sylancr 411 | . . . . . . . . 9 |
71 | 70 | nnrecred 8874 | . . . . . . . 8 |
72 | 71 | recnd 7900 | . . . . . . 7 |
73 | subcl 8068 | . . . . . . 7 | |
74 | 66, 72, 73 | sylancr 411 | . . . . . 6 |
75 | 20 | a1i 9 | . . . . . 6 |
76 | 56, 57 | recap0d 8649 | . . . . . 6 # |
77 | 74, 75, 76 | divclapd 8657 | . . . . 5 |
78 | 77, 75, 63 | mulassd 7895 | . . . 4 |
79 | 74, 75, 76 | divcanap1d 8658 | . . . . 5 |
80 | 79 | oveq1d 5836 | . . . 4 |
81 | 65, 78, 80 | 3eqtr2d 2196 | . . 3 |
82 | halfre 9040 | . . . . . . 7 | |
83 | 1re 7871 | . . . . . . 7 | |
84 | halflt1 9044 | . . . . . . 7 | |
85 | 82, 83, 84 | ltapii 8504 | . . . . . 6 # |
86 | 85 | a1i 9 | . . . . 5 # |
87 | 75, 86, 68 | geoserap 11397 | . . . 4 |
88 | 87 | oveq1d 5836 | . . 3 |
89 | mulid2 7870 | . . . . . . 7 | |
90 | 89 | adantl 275 | . . . . . 6 |
91 | 90 | eqcomd 2163 | . . . . 5 |
92 | 70 | nncnd 8841 | . . . . . 6 |
93 | 70 | nnap0d 8873 | . . . . . 6 # |
94 | 63, 92, 93 | divrecap2d 8661 | . . . . 5 |
95 | 91, 94 | oveq12d 5839 | . . . 4 |
96 | 66 | a1i 9 | . . . . 5 |
97 | 96, 72, 63 | subdird 8284 | . . . 4 |
98 | 95, 97 | eqtr4d 2193 | . . 3 |
99 | 81, 88, 98 | 3eqtr4d 2200 | . 2 |
100 | 16, 55, 99 | 3eqtrd 2194 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 class class class wbr 3965 (class class class)co 5821 cc 7724 cc0 7726 c1 7727 caddc 7729 cmul 7731 cmin 8040 # cap 8450 cdiv 8539 cn 8827 c2 8878 cn0 9084 cz 9161 cfz 9905 cexp 10411 csu 11243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 ax-caucvg 7846 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-isom 5178 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-frec 6335 df-1o 6360 df-oadd 6364 df-er 6477 df-en 6683 df-dom 6684 df-fin 6685 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-n0 9085 df-z 9162 df-uz 9434 df-q 9522 df-rp 9554 df-fz 9906 df-fzo 10035 df-seqfrec 10338 df-exp 10412 df-ihash 10643 df-cj 10735 df-re 10736 df-im 10737 df-rsqrt 10891 df-abs 10892 df-clim 11169 df-sumdc 11244 |
This theorem is referenced by: geo2lim 11406 trilpolemlt1 13583 |
Copyright terms: Public domain | W3C validator |