| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geo2sum | Unicode version | ||
| Description: The value of the finite
geometric series |
| Ref | Expression |
|---|---|
| geo2sum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9481 |
. . 3
| |
| 2 | nnz 9473 |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | simplr 528 |
. . . 4
| |
| 5 | 2nn 9280 |
. . . . . 6
| |
| 6 | elfznn 10258 |
. . . . . . . 8
| |
| 7 | 6 | adantl 277 |
. . . . . . 7
|
| 8 | 7 | nnnn0d 9430 |
. . . . . 6
|
| 9 | nnexpcl 10782 |
. . . . . 6
| |
| 10 | 5, 8, 9 | sylancr 414 |
. . . . 5
|
| 11 | 10 | nncnd 9132 |
. . . 4
|
| 12 | 10 | nnap0d 9164 |
. . . 4
|
| 13 | 4, 11, 12 | divclapd 8945 |
. . 3
|
| 14 | oveq2 6015 |
. . . 4
| |
| 15 | 14 | oveq2d 6023 |
. . 3
|
| 16 | 1, 1, 3, 13, 15 | fsumshftm 11964 |
. 2
|
| 17 | 1m1e0 9187 |
. . . . 5
| |
| 18 | 17 | oveq1i 6017 |
. . . 4
|
| 19 | 18 | sumeq1i 11882 |
. . 3
|
| 20 | halfcn 9333 |
. . . . . . . . . 10
| |
| 21 | elfznn0 10318 |
. . . . . . . . . . 11
| |
| 22 | 21 | adantl 277 |
. . . . . . . . . 10
|
| 23 | expcl 10787 |
. . . . . . . . . 10
| |
| 24 | 20, 22, 23 | sylancr 414 |
. . . . . . . . 9
|
| 25 | 2cnd 9191 |
. . . . . . . . 9
| |
| 26 | 2ap0 9211 |
. . . . . . . . . 10
| |
| 27 | 26 | a1i 9 |
. . . . . . . . 9
|
| 28 | 24, 25, 27 | divrecapd 8948 |
. . . . . . . 8
|
| 29 | expp1 10776 |
. . . . . . . . 9
| |
| 30 | 20, 22, 29 | sylancr 414 |
. . . . . . . 8
|
| 31 | elfzelz 10229 |
. . . . . . . . . . 11
| |
| 32 | 31 | peano2zd 9580 |
. . . . . . . . . 10
|
| 33 | 32 | adantl 277 |
. . . . . . . . 9
|
| 34 | 25, 27, 33 | exprecapd 10911 |
. . . . . . . 8
|
| 35 | 28, 30, 34 | 3eqtr2rd 2269 |
. . . . . . 7
|
| 36 | 35 | oveq2d 6023 |
. . . . . 6
|
| 37 | simplr 528 |
. . . . . . 7
| |
| 38 | peano2nn0 9417 |
. . . . . . . . . 10
| |
| 39 | 22, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | nnexpcl 10782 |
. . . . . . . . 9
| |
| 41 | 5, 39, 40 | sylancr 414 |
. . . . . . . 8
|
| 42 | 41 | nncnd 9132 |
. . . . . . 7
|
| 43 | 41 | nnap0d 9164 |
. . . . . . 7
|
| 44 | 37, 42, 43 | divrecapd 8948 |
. . . . . 6
|
| 45 | 24, 37, 25, 27 | div12apd 8982 |
. . . . . 6
|
| 46 | 36, 44, 45 | 3eqtr4d 2272 |
. . . . 5
|
| 47 | 46 | sumeq2dv 11887 |
. . . 4
|
| 48 | 0zd 9466 |
. . . . . 6
| |
| 49 | 3, 1 | zsubcld 9582 |
. . . . . 6
|
| 50 | 48, 49 | fzfigd 10661 |
. . . . 5
|
| 51 | halfcl 9345 |
. . . . . 6
| |
| 52 | 51 | adantl 277 |
. . . . 5
|
| 53 | 50, 52, 24 | fsummulc1 11968 |
. . . 4
|
| 54 | 47, 53 | eqtr4d 2265 |
. . 3
|
| 55 | 19, 54 | eqtrid 2274 |
. 2
|
| 56 | 2cnd 9191 |
. . . . . . . 8
| |
| 57 | 26 | a1i 9 |
. . . . . . . 8
|
| 58 | 56, 57, 3 | exprecapd 10911 |
. . . . . . 7
|
| 59 | 58 | oveq2d 6023 |
. . . . . 6
|
| 60 | 1mhlfehlf 9337 |
. . . . . . 7
| |
| 61 | 60 | a1i 9 |
. . . . . 6
|
| 62 | 59, 61 | oveq12d 6025 |
. . . . 5
|
| 63 | simpr 110 |
. . . . . 6
| |
| 64 | 63, 56, 57 | divrecap2d 8949 |
. . . . 5
|
| 65 | 62, 64 | oveq12d 6025 |
. . . 4
|
| 66 | ax-1cn 8100 |
. . . . . . 7
| |
| 67 | nnnn0 9384 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantr 276 |
. . . . . . . . . 10
|
| 69 | nnexpcl 10782 |
. . . . . . . . . 10
| |
| 70 | 5, 68, 69 | sylancr 414 |
. . . . . . . . 9
|
| 71 | 70 | nnrecred 9165 |
. . . . . . . 8
|
| 72 | 71 | recnd 8183 |
. . . . . . 7
|
| 73 | subcl 8353 |
. . . . . . 7
| |
| 74 | 66, 72, 73 | sylancr 414 |
. . . . . 6
|
| 75 | 20 | a1i 9 |
. . . . . 6
|
| 76 | 56, 57 | recap0d 8937 |
. . . . . 6
|
| 77 | 74, 75, 76 | divclapd 8945 |
. . . . 5
|
| 78 | 77, 75, 63 | mulassd 8178 |
. . . 4
|
| 79 | 74, 75, 76 | divcanap1d 8946 |
. . . . 5
|
| 80 | 79 | oveq1d 6022 |
. . . 4
|
| 81 | 65, 78, 80 | 3eqtr2d 2268 |
. . 3
|
| 82 | halfre 9332 |
. . . . . . 7
| |
| 83 | 1re 8153 |
. . . . . . 7
| |
| 84 | halflt1 9336 |
. . . . . . 7
| |
| 85 | 82, 83, 84 | ltapii 8790 |
. . . . . 6
|
| 86 | 85 | a1i 9 |
. . . . 5
|
| 87 | 75, 86, 68 | geoserap 12026 |
. . . 4
|
| 88 | 87 | oveq1d 6022 |
. . 3
|
| 89 | mullid 8152 |
. . . . . . 7
| |
| 90 | 89 | adantl 277 |
. . . . . 6
|
| 91 | 90 | eqcomd 2235 |
. . . . 5
|
| 92 | 70 | nncnd 9132 |
. . . . . 6
|
| 93 | 70 | nnap0d 9164 |
. . . . . 6
|
| 94 | 63, 92, 93 | divrecap2d 8949 |
. . . . 5
|
| 95 | 91, 94 | oveq12d 6025 |
. . . 4
|
| 96 | 66 | a1i 9 |
. . . . 5
|
| 97 | 96, 72, 63 | subdird 8569 |
. . . 4
|
| 98 | 95, 97 | eqtr4d 2265 |
. . 3
|
| 99 | 81, 88, 98 | 3eqtr4d 2272 |
. 2
|
| 100 | 16, 55, 99 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 |
| This theorem is referenced by: geo2lim 12035 trilpolemlt1 16439 |
| Copyright terms: Public domain | W3C validator |