| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geo2sum | Unicode version | ||
| Description: The value of the finite
geometric series |
| Ref | Expression |
|---|---|
| geo2sum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9441 |
. . 3
| |
| 2 | nnz 9433 |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | simplr 528 |
. . . 4
| |
| 5 | 2nn 9240 |
. . . . . 6
| |
| 6 | elfznn 10218 |
. . . . . . . 8
| |
| 7 | 6 | adantl 277 |
. . . . . . 7
|
| 8 | 7 | nnnn0d 9390 |
. . . . . 6
|
| 9 | nnexpcl 10741 |
. . . . . 6
| |
| 10 | 5, 8, 9 | sylancr 414 |
. . . . 5
|
| 11 | 10 | nncnd 9092 |
. . . 4
|
| 12 | 10 | nnap0d 9124 |
. . . 4
|
| 13 | 4, 11, 12 | divclapd 8905 |
. . 3
|
| 14 | oveq2 5982 |
. . . 4
| |
| 15 | 14 | oveq2d 5990 |
. . 3
|
| 16 | 1, 1, 3, 13, 15 | fsumshftm 11922 |
. 2
|
| 17 | 1m1e0 9147 |
. . . . 5
| |
| 18 | 17 | oveq1i 5984 |
. . . 4
|
| 19 | 18 | sumeq1i 11840 |
. . 3
|
| 20 | halfcn 9293 |
. . . . . . . . . 10
| |
| 21 | elfznn0 10278 |
. . . . . . . . . . 11
| |
| 22 | 21 | adantl 277 |
. . . . . . . . . 10
|
| 23 | expcl 10746 |
. . . . . . . . . 10
| |
| 24 | 20, 22, 23 | sylancr 414 |
. . . . . . . . 9
|
| 25 | 2cnd 9151 |
. . . . . . . . 9
| |
| 26 | 2ap0 9171 |
. . . . . . . . . 10
| |
| 27 | 26 | a1i 9 |
. . . . . . . . 9
|
| 28 | 24, 25, 27 | divrecapd 8908 |
. . . . . . . 8
|
| 29 | expp1 10735 |
. . . . . . . . 9
| |
| 30 | 20, 22, 29 | sylancr 414 |
. . . . . . . 8
|
| 31 | elfzelz 10189 |
. . . . . . . . . . 11
| |
| 32 | 31 | peano2zd 9540 |
. . . . . . . . . 10
|
| 33 | 32 | adantl 277 |
. . . . . . . . 9
|
| 34 | 25, 27, 33 | exprecapd 10870 |
. . . . . . . 8
|
| 35 | 28, 30, 34 | 3eqtr2rd 2249 |
. . . . . . 7
|
| 36 | 35 | oveq2d 5990 |
. . . . . 6
|
| 37 | simplr 528 |
. . . . . . 7
| |
| 38 | peano2nn0 9377 |
. . . . . . . . . 10
| |
| 39 | 22, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | nnexpcl 10741 |
. . . . . . . . 9
| |
| 41 | 5, 39, 40 | sylancr 414 |
. . . . . . . 8
|
| 42 | 41 | nncnd 9092 |
. . . . . . 7
|
| 43 | 41 | nnap0d 9124 |
. . . . . . 7
|
| 44 | 37, 42, 43 | divrecapd 8908 |
. . . . . 6
|
| 45 | 24, 37, 25, 27 | div12apd 8942 |
. . . . . 6
|
| 46 | 36, 44, 45 | 3eqtr4d 2252 |
. . . . 5
|
| 47 | 46 | sumeq2dv 11845 |
. . . 4
|
| 48 | 0zd 9426 |
. . . . . 6
| |
| 49 | 3, 1 | zsubcld 9542 |
. . . . . 6
|
| 50 | 48, 49 | fzfigd 10620 |
. . . . 5
|
| 51 | halfcl 9305 |
. . . . . 6
| |
| 52 | 51 | adantl 277 |
. . . . 5
|
| 53 | 50, 52, 24 | fsummulc1 11926 |
. . . 4
|
| 54 | 47, 53 | eqtr4d 2245 |
. . 3
|
| 55 | 19, 54 | eqtrid 2254 |
. 2
|
| 56 | 2cnd 9151 |
. . . . . . . 8
| |
| 57 | 26 | a1i 9 |
. . . . . . . 8
|
| 58 | 56, 57, 3 | exprecapd 10870 |
. . . . . . 7
|
| 59 | 58 | oveq2d 5990 |
. . . . . 6
|
| 60 | 1mhlfehlf 9297 |
. . . . . . 7
| |
| 61 | 60 | a1i 9 |
. . . . . 6
|
| 62 | 59, 61 | oveq12d 5992 |
. . . . 5
|
| 63 | simpr 110 |
. . . . . 6
| |
| 64 | 63, 56, 57 | divrecap2d 8909 |
. . . . 5
|
| 65 | 62, 64 | oveq12d 5992 |
. . . 4
|
| 66 | ax-1cn 8060 |
. . . . . . 7
| |
| 67 | nnnn0 9344 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantr 276 |
. . . . . . . . . 10
|
| 69 | nnexpcl 10741 |
. . . . . . . . . 10
| |
| 70 | 5, 68, 69 | sylancr 414 |
. . . . . . . . 9
|
| 71 | 70 | nnrecred 9125 |
. . . . . . . 8
|
| 72 | 71 | recnd 8143 |
. . . . . . 7
|
| 73 | subcl 8313 |
. . . . . . 7
| |
| 74 | 66, 72, 73 | sylancr 414 |
. . . . . 6
|
| 75 | 20 | a1i 9 |
. . . . . 6
|
| 76 | 56, 57 | recap0d 8897 |
. . . . . 6
|
| 77 | 74, 75, 76 | divclapd 8905 |
. . . . 5
|
| 78 | 77, 75, 63 | mulassd 8138 |
. . . 4
|
| 79 | 74, 75, 76 | divcanap1d 8906 |
. . . . 5
|
| 80 | 79 | oveq1d 5989 |
. . . 4
|
| 81 | 65, 78, 80 | 3eqtr2d 2248 |
. . 3
|
| 82 | halfre 9292 |
. . . . . . 7
| |
| 83 | 1re 8113 |
. . . . . . 7
| |
| 84 | halflt1 9296 |
. . . . . . 7
| |
| 85 | 82, 83, 84 | ltapii 8750 |
. . . . . 6
|
| 86 | 85 | a1i 9 |
. . . . 5
|
| 87 | 75, 86, 68 | geoserap 11984 |
. . . 4
|
| 88 | 87 | oveq1d 5989 |
. . 3
|
| 89 | mullid 8112 |
. . . . . . 7
| |
| 90 | 89 | adantl 277 |
. . . . . 6
|
| 91 | 90 | eqcomd 2215 |
. . . . 5
|
| 92 | 70 | nncnd 9092 |
. . . . . 6
|
| 93 | 70 | nnap0d 9124 |
. . . . . 6
|
| 94 | 63, 92, 93 | divrecap2d 8909 |
. . . . 5
|
| 95 | 91, 94 | oveq12d 5992 |
. . . 4
|
| 96 | 66 | a1i 9 |
. . . . 5
|
| 97 | 96, 72, 63 | subdird 8529 |
. . . 4
|
| 98 | 95, 97 | eqtr4d 2245 |
. . 3
|
| 99 | 81, 88, 98 | 3eqtr4d 2252 |
. 2
|
| 100 | 16, 55, 99 | 3eqtrd 2246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-en 6858 df-dom 6859 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-ihash 10965 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 |
| This theorem is referenced by: geo2lim 11993 trilpolemlt1 16320 |
| Copyright terms: Public domain | W3C validator |