Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > geo2sum | Unicode version |
Description: The value of the finite geometric series ... , multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geo2sum |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1zzd 9218 | . . 3 | |
2 | nnz 9210 | . . . 4 | |
3 | 2 | adantr 274 | . . 3 |
4 | simplr 520 | . . . 4 | |
5 | 2nn 9018 | . . . . . 6 | |
6 | elfznn 9989 | . . . . . . . 8 | |
7 | 6 | adantl 275 | . . . . . . 7 |
8 | 7 | nnnn0d 9167 | . . . . . 6 |
9 | nnexpcl 10468 | . . . . . 6 | |
10 | 5, 8, 9 | sylancr 411 | . . . . 5 |
11 | 10 | nncnd 8871 | . . . 4 |
12 | 10 | nnap0d 8903 | . . . 4 # |
13 | 4, 11, 12 | divclapd 8686 | . . 3 |
14 | oveq2 5850 | . . . 4 | |
15 | 14 | oveq2d 5858 | . . 3 |
16 | 1, 1, 3, 13, 15 | fsumshftm 11386 | . 2 |
17 | 1m1e0 8926 | . . . . 5 | |
18 | 17 | oveq1i 5852 | . . . 4 |
19 | 18 | sumeq1i 11304 | . . 3 |
20 | halfcn 9071 | . . . . . . . . . 10 | |
21 | elfznn0 10049 | . . . . . . . . . . 11 | |
22 | 21 | adantl 275 | . . . . . . . . . 10 |
23 | expcl 10473 | . . . . . . . . . 10 | |
24 | 20, 22, 23 | sylancr 411 | . . . . . . . . 9 |
25 | 2cnd 8930 | . . . . . . . . 9 | |
26 | 2ap0 8950 | . . . . . . . . . 10 # | |
27 | 26 | a1i 9 | . . . . . . . . 9 # |
28 | 24, 25, 27 | divrecapd 8689 | . . . . . . . 8 |
29 | expp1 10462 | . . . . . . . . 9 | |
30 | 20, 22, 29 | sylancr 411 | . . . . . . . 8 |
31 | elfzelz 9960 | . . . . . . . . . . 11 | |
32 | 31 | peano2zd 9316 | . . . . . . . . . 10 |
33 | 32 | adantl 275 | . . . . . . . . 9 |
34 | 25, 27, 33 | exprecapd 10596 | . . . . . . . 8 |
35 | 28, 30, 34 | 3eqtr2rd 2205 | . . . . . . 7 |
36 | 35 | oveq2d 5858 | . . . . . 6 |
37 | simplr 520 | . . . . . . 7 | |
38 | peano2nn0 9154 | . . . . . . . . . 10 | |
39 | 22, 38 | syl 14 | . . . . . . . . 9 |
40 | nnexpcl 10468 | . . . . . . . . 9 | |
41 | 5, 39, 40 | sylancr 411 | . . . . . . . 8 |
42 | 41 | nncnd 8871 | . . . . . . 7 |
43 | 41 | nnap0d 8903 | . . . . . . 7 # |
44 | 37, 42, 43 | divrecapd 8689 | . . . . . 6 |
45 | 24, 37, 25, 27 | div12apd 8723 | . . . . . 6 |
46 | 36, 44, 45 | 3eqtr4d 2208 | . . . . 5 |
47 | 46 | sumeq2dv 11309 | . . . 4 |
48 | 0zd 9203 | . . . . . 6 | |
49 | 3, 1 | zsubcld 9318 | . . . . . 6 |
50 | 48, 49 | fzfigd 10366 | . . . . 5 |
51 | halfcl 9083 | . . . . . 6 | |
52 | 51 | adantl 275 | . . . . 5 |
53 | 50, 52, 24 | fsummulc1 11390 | . . . 4 |
54 | 47, 53 | eqtr4d 2201 | . . 3 |
55 | 19, 54 | syl5eq 2211 | . 2 |
56 | 2cnd 8930 | . . . . . . . 8 | |
57 | 26 | a1i 9 | . . . . . . . 8 # |
58 | 56, 57, 3 | exprecapd 10596 | . . . . . . 7 |
59 | 58 | oveq2d 5858 | . . . . . 6 |
60 | 1mhlfehlf 9075 | . . . . . . 7 | |
61 | 60 | a1i 9 | . . . . . 6 |
62 | 59, 61 | oveq12d 5860 | . . . . 5 |
63 | simpr 109 | . . . . . 6 | |
64 | 63, 56, 57 | divrecap2d 8690 | . . . . 5 |
65 | 62, 64 | oveq12d 5860 | . . . 4 |
66 | ax-1cn 7846 | . . . . . . 7 | |
67 | nnnn0 9121 | . . . . . . . . . . 11 | |
68 | 67 | adantr 274 | . . . . . . . . . 10 |
69 | nnexpcl 10468 | . . . . . . . . . 10 | |
70 | 5, 68, 69 | sylancr 411 | . . . . . . . . 9 |
71 | 70 | nnrecred 8904 | . . . . . . . 8 |
72 | 71 | recnd 7927 | . . . . . . 7 |
73 | subcl 8097 | . . . . . . 7 | |
74 | 66, 72, 73 | sylancr 411 | . . . . . 6 |
75 | 20 | a1i 9 | . . . . . 6 |
76 | 56, 57 | recap0d 8678 | . . . . . 6 # |
77 | 74, 75, 76 | divclapd 8686 | . . . . 5 |
78 | 77, 75, 63 | mulassd 7922 | . . . 4 |
79 | 74, 75, 76 | divcanap1d 8687 | . . . . 5 |
80 | 79 | oveq1d 5857 | . . . 4 |
81 | 65, 78, 80 | 3eqtr2d 2204 | . . 3 |
82 | halfre 9070 | . . . . . . 7 | |
83 | 1re 7898 | . . . . . . 7 | |
84 | halflt1 9074 | . . . . . . 7 | |
85 | 82, 83, 84 | ltapii 8533 | . . . . . 6 # |
86 | 85 | a1i 9 | . . . . 5 # |
87 | 75, 86, 68 | geoserap 11448 | . . . 4 |
88 | 87 | oveq1d 5857 | . . 3 |
89 | mulid2 7897 | . . . . . . 7 | |
90 | 89 | adantl 275 | . . . . . 6 |
91 | 90 | eqcomd 2171 | . . . . 5 |
92 | 70 | nncnd 8871 | . . . . . 6 |
93 | 70 | nnap0d 8903 | . . . . . 6 # |
94 | 63, 92, 93 | divrecap2d 8690 | . . . . 5 |
95 | 91, 94 | oveq12d 5860 | . . . 4 |
96 | 66 | a1i 9 | . . . . 5 |
97 | 96, 72, 63 | subdird 8313 | . . . 4 |
98 | 95, 97 | eqtr4d 2201 | . . 3 |
99 | 81, 88, 98 | 3eqtr4d 2208 | . 2 |
100 | 16, 55, 99 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 cmin 8069 # cap 8479 cdiv 8568 cn 8857 c2 8908 cn0 9114 cz 9191 cfz 9944 cexp 10454 csu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: geo2lim 11457 trilpolemlt1 13920 |
Copyright terms: Public domain | W3C validator |