| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geo2sum | Unicode version | ||
| Description: The value of the finite
geometric series |
| Ref | Expression |
|---|---|
| geo2sum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9406 |
. . 3
| |
| 2 | nnz 9398 |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | simplr 528 |
. . . 4
| |
| 5 | 2nn 9205 |
. . . . . 6
| |
| 6 | elfznn 10183 |
. . . . . . . 8
| |
| 7 | 6 | adantl 277 |
. . . . . . 7
|
| 8 | 7 | nnnn0d 9355 |
. . . . . 6
|
| 9 | nnexpcl 10704 |
. . . . . 6
| |
| 10 | 5, 8, 9 | sylancr 414 |
. . . . 5
|
| 11 | 10 | nncnd 9057 |
. . . 4
|
| 12 | 10 | nnap0d 9089 |
. . . 4
|
| 13 | 4, 11, 12 | divclapd 8870 |
. . 3
|
| 14 | oveq2 5959 |
. . . 4
| |
| 15 | 14 | oveq2d 5967 |
. . 3
|
| 16 | 1, 1, 3, 13, 15 | fsumshftm 11800 |
. 2
|
| 17 | 1m1e0 9112 |
. . . . 5
| |
| 18 | 17 | oveq1i 5961 |
. . . 4
|
| 19 | 18 | sumeq1i 11718 |
. . 3
|
| 20 | halfcn 9258 |
. . . . . . . . . 10
| |
| 21 | elfznn0 10243 |
. . . . . . . . . . 11
| |
| 22 | 21 | adantl 277 |
. . . . . . . . . 10
|
| 23 | expcl 10709 |
. . . . . . . . . 10
| |
| 24 | 20, 22, 23 | sylancr 414 |
. . . . . . . . 9
|
| 25 | 2cnd 9116 |
. . . . . . . . 9
| |
| 26 | 2ap0 9136 |
. . . . . . . . . 10
| |
| 27 | 26 | a1i 9 |
. . . . . . . . 9
|
| 28 | 24, 25, 27 | divrecapd 8873 |
. . . . . . . 8
|
| 29 | expp1 10698 |
. . . . . . . . 9
| |
| 30 | 20, 22, 29 | sylancr 414 |
. . . . . . . 8
|
| 31 | elfzelz 10154 |
. . . . . . . . . . 11
| |
| 32 | 31 | peano2zd 9505 |
. . . . . . . . . 10
|
| 33 | 32 | adantl 277 |
. . . . . . . . 9
|
| 34 | 25, 27, 33 | exprecapd 10833 |
. . . . . . . 8
|
| 35 | 28, 30, 34 | 3eqtr2rd 2246 |
. . . . . . 7
|
| 36 | 35 | oveq2d 5967 |
. . . . . 6
|
| 37 | simplr 528 |
. . . . . . 7
| |
| 38 | peano2nn0 9342 |
. . . . . . . . . 10
| |
| 39 | 22, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | nnexpcl 10704 |
. . . . . . . . 9
| |
| 41 | 5, 39, 40 | sylancr 414 |
. . . . . . . 8
|
| 42 | 41 | nncnd 9057 |
. . . . . . 7
|
| 43 | 41 | nnap0d 9089 |
. . . . . . 7
|
| 44 | 37, 42, 43 | divrecapd 8873 |
. . . . . 6
|
| 45 | 24, 37, 25, 27 | div12apd 8907 |
. . . . . 6
|
| 46 | 36, 44, 45 | 3eqtr4d 2249 |
. . . . 5
|
| 47 | 46 | sumeq2dv 11723 |
. . . 4
|
| 48 | 0zd 9391 |
. . . . . 6
| |
| 49 | 3, 1 | zsubcld 9507 |
. . . . . 6
|
| 50 | 48, 49 | fzfigd 10583 |
. . . . 5
|
| 51 | halfcl 9270 |
. . . . . 6
| |
| 52 | 51 | adantl 277 |
. . . . 5
|
| 53 | 50, 52, 24 | fsummulc1 11804 |
. . . 4
|
| 54 | 47, 53 | eqtr4d 2242 |
. . 3
|
| 55 | 19, 54 | eqtrid 2251 |
. 2
|
| 56 | 2cnd 9116 |
. . . . . . . 8
| |
| 57 | 26 | a1i 9 |
. . . . . . . 8
|
| 58 | 56, 57, 3 | exprecapd 10833 |
. . . . . . 7
|
| 59 | 58 | oveq2d 5967 |
. . . . . 6
|
| 60 | 1mhlfehlf 9262 |
. . . . . . 7
| |
| 61 | 60 | a1i 9 |
. . . . . 6
|
| 62 | 59, 61 | oveq12d 5969 |
. . . . 5
|
| 63 | simpr 110 |
. . . . . 6
| |
| 64 | 63, 56, 57 | divrecap2d 8874 |
. . . . 5
|
| 65 | 62, 64 | oveq12d 5969 |
. . . 4
|
| 66 | ax-1cn 8025 |
. . . . . . 7
| |
| 67 | nnnn0 9309 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantr 276 |
. . . . . . . . . 10
|
| 69 | nnexpcl 10704 |
. . . . . . . . . 10
| |
| 70 | 5, 68, 69 | sylancr 414 |
. . . . . . . . 9
|
| 71 | 70 | nnrecred 9090 |
. . . . . . . 8
|
| 72 | 71 | recnd 8108 |
. . . . . . 7
|
| 73 | subcl 8278 |
. . . . . . 7
| |
| 74 | 66, 72, 73 | sylancr 414 |
. . . . . 6
|
| 75 | 20 | a1i 9 |
. . . . . 6
|
| 76 | 56, 57 | recap0d 8862 |
. . . . . 6
|
| 77 | 74, 75, 76 | divclapd 8870 |
. . . . 5
|
| 78 | 77, 75, 63 | mulassd 8103 |
. . . 4
|
| 79 | 74, 75, 76 | divcanap1d 8871 |
. . . . 5
|
| 80 | 79 | oveq1d 5966 |
. . . 4
|
| 81 | 65, 78, 80 | 3eqtr2d 2245 |
. . 3
|
| 82 | halfre 9257 |
. . . . . . 7
| |
| 83 | 1re 8078 |
. . . . . . 7
| |
| 84 | halflt1 9261 |
. . . . . . 7
| |
| 85 | 82, 83, 84 | ltapii 8715 |
. . . . . 6
|
| 86 | 85 | a1i 9 |
. . . . 5
|
| 87 | 75, 86, 68 | geoserap 11862 |
. . . 4
|
| 88 | 87 | oveq1d 5966 |
. . 3
|
| 89 | mullid 8077 |
. . . . . . 7
| |
| 90 | 89 | adantl 277 |
. . . . . 6
|
| 91 | 90 | eqcomd 2212 |
. . . . 5
|
| 92 | 70 | nncnd 9057 |
. . . . . 6
|
| 93 | 70 | nnap0d 9089 |
. . . . . 6
|
| 94 | 63, 92, 93 | divrecap2d 8874 |
. . . . 5
|
| 95 | 91, 94 | oveq12d 5969 |
. . . 4
|
| 96 | 66 | a1i 9 |
. . . . 5
|
| 97 | 96, 72, 63 | subdird 8494 |
. . . 4
|
| 98 | 95, 97 | eqtr4d 2242 |
. . 3
|
| 99 | 81, 88, 98 | 3eqtr4d 2249 |
. 2
|
| 100 | 16, 55, 99 | 3eqtrd 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 |
| This theorem is referenced by: geo2lim 11871 trilpolemlt1 16054 |
| Copyright terms: Public domain | W3C validator |