Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > geo2sum | Unicode version |
Description: The value of the finite geometric series ... , multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geo2sum |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1zzd 9239 | . . 3 | |
2 | nnz 9231 | . . . 4 | |
3 | 2 | adantr 274 | . . 3 |
4 | simplr 525 | . . . 4 | |
5 | 2nn 9039 | . . . . . 6 | |
6 | elfznn 10010 | . . . . . . . 8 | |
7 | 6 | adantl 275 | . . . . . . 7 |
8 | 7 | nnnn0d 9188 | . . . . . 6 |
9 | nnexpcl 10489 | . . . . . 6 | |
10 | 5, 8, 9 | sylancr 412 | . . . . 5 |
11 | 10 | nncnd 8892 | . . . 4 |
12 | 10 | nnap0d 8924 | . . . 4 # |
13 | 4, 11, 12 | divclapd 8707 | . . 3 |
14 | oveq2 5861 | . . . 4 | |
15 | 14 | oveq2d 5869 | . . 3 |
16 | 1, 1, 3, 13, 15 | fsumshftm 11408 | . 2 |
17 | 1m1e0 8947 | . . . . 5 | |
18 | 17 | oveq1i 5863 | . . . 4 |
19 | 18 | sumeq1i 11326 | . . 3 |
20 | halfcn 9092 | . . . . . . . . . 10 | |
21 | elfznn0 10070 | . . . . . . . . . . 11 | |
22 | 21 | adantl 275 | . . . . . . . . . 10 |
23 | expcl 10494 | . . . . . . . . . 10 | |
24 | 20, 22, 23 | sylancr 412 | . . . . . . . . 9 |
25 | 2cnd 8951 | . . . . . . . . 9 | |
26 | 2ap0 8971 | . . . . . . . . . 10 # | |
27 | 26 | a1i 9 | . . . . . . . . 9 # |
28 | 24, 25, 27 | divrecapd 8710 | . . . . . . . 8 |
29 | expp1 10483 | . . . . . . . . 9 | |
30 | 20, 22, 29 | sylancr 412 | . . . . . . . 8 |
31 | elfzelz 9981 | . . . . . . . . . . 11 | |
32 | 31 | peano2zd 9337 | . . . . . . . . . 10 |
33 | 32 | adantl 275 | . . . . . . . . 9 |
34 | 25, 27, 33 | exprecapd 10617 | . . . . . . . 8 |
35 | 28, 30, 34 | 3eqtr2rd 2210 | . . . . . . 7 |
36 | 35 | oveq2d 5869 | . . . . . 6 |
37 | simplr 525 | . . . . . . 7 | |
38 | peano2nn0 9175 | . . . . . . . . . 10 | |
39 | 22, 38 | syl 14 | . . . . . . . . 9 |
40 | nnexpcl 10489 | . . . . . . . . 9 | |
41 | 5, 39, 40 | sylancr 412 | . . . . . . . 8 |
42 | 41 | nncnd 8892 | . . . . . . 7 |
43 | 41 | nnap0d 8924 | . . . . . . 7 # |
44 | 37, 42, 43 | divrecapd 8710 | . . . . . 6 |
45 | 24, 37, 25, 27 | div12apd 8744 | . . . . . 6 |
46 | 36, 44, 45 | 3eqtr4d 2213 | . . . . 5 |
47 | 46 | sumeq2dv 11331 | . . . 4 |
48 | 0zd 9224 | . . . . . 6 | |
49 | 3, 1 | zsubcld 9339 | . . . . . 6 |
50 | 48, 49 | fzfigd 10387 | . . . . 5 |
51 | halfcl 9104 | . . . . . 6 | |
52 | 51 | adantl 275 | . . . . 5 |
53 | 50, 52, 24 | fsummulc1 11412 | . . . 4 |
54 | 47, 53 | eqtr4d 2206 | . . 3 |
55 | 19, 54 | eqtrid 2215 | . 2 |
56 | 2cnd 8951 | . . . . . . . 8 | |
57 | 26 | a1i 9 | . . . . . . . 8 # |
58 | 56, 57, 3 | exprecapd 10617 | . . . . . . 7 |
59 | 58 | oveq2d 5869 | . . . . . 6 |
60 | 1mhlfehlf 9096 | . . . . . . 7 | |
61 | 60 | a1i 9 | . . . . . 6 |
62 | 59, 61 | oveq12d 5871 | . . . . 5 |
63 | simpr 109 | . . . . . 6 | |
64 | 63, 56, 57 | divrecap2d 8711 | . . . . 5 |
65 | 62, 64 | oveq12d 5871 | . . . 4 |
66 | ax-1cn 7867 | . . . . . . 7 | |
67 | nnnn0 9142 | . . . . . . . . . . 11 | |
68 | 67 | adantr 274 | . . . . . . . . . 10 |
69 | nnexpcl 10489 | . . . . . . . . . 10 | |
70 | 5, 68, 69 | sylancr 412 | . . . . . . . . 9 |
71 | 70 | nnrecred 8925 | . . . . . . . 8 |
72 | 71 | recnd 7948 | . . . . . . 7 |
73 | subcl 8118 | . . . . . . 7 | |
74 | 66, 72, 73 | sylancr 412 | . . . . . 6 |
75 | 20 | a1i 9 | . . . . . 6 |
76 | 56, 57 | recap0d 8699 | . . . . . 6 # |
77 | 74, 75, 76 | divclapd 8707 | . . . . 5 |
78 | 77, 75, 63 | mulassd 7943 | . . . 4 |
79 | 74, 75, 76 | divcanap1d 8708 | . . . . 5 |
80 | 79 | oveq1d 5868 | . . . 4 |
81 | 65, 78, 80 | 3eqtr2d 2209 | . . 3 |
82 | halfre 9091 | . . . . . . 7 | |
83 | 1re 7919 | . . . . . . 7 | |
84 | halflt1 9095 | . . . . . . 7 | |
85 | 82, 83, 84 | ltapii 8554 | . . . . . 6 # |
86 | 85 | a1i 9 | . . . . 5 # |
87 | 75, 86, 68 | geoserap 11470 | . . . 4 |
88 | 87 | oveq1d 5868 | . . 3 |
89 | mulid2 7918 | . . . . . . 7 | |
90 | 89 | adantl 275 | . . . . . 6 |
91 | 90 | eqcomd 2176 | . . . . 5 |
92 | 70 | nncnd 8892 | . . . . . 6 |
93 | 70 | nnap0d 8924 | . . . . . 6 # |
94 | 63, 92, 93 | divrecap2d 8711 | . . . . 5 |
95 | 91, 94 | oveq12d 5871 | . . . 4 |
96 | 66 | a1i 9 | . . . . 5 |
97 | 96, 72, 63 | subdird 8334 | . . . 4 |
98 | 95, 97 | eqtr4d 2206 | . . 3 |
99 | 81, 88, 98 | 3eqtr4d 2213 | . 2 |
100 | 16, 55, 99 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cmul 7779 cmin 8090 # cap 8500 cdiv 8589 cn 8878 c2 8929 cn0 9135 cz 9212 cfz 9965 cexp 10475 csu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: geo2lim 11479 trilpolemlt1 14073 |
Copyright terms: Public domain | W3C validator |