ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd2 Unicode version

Theorem faclbnd2 10889
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd2  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  <_ 
( ! `  N
) )

Proof of Theorem faclbnd2
StepHypRef Expression
1 sq2 10782 . . . . . 6  |-  ( 2 ^ 2 )  =  4
2 2t2e4 9193 . . . . . 6  |-  ( 2  x.  2 )  =  4
31, 2eqtr4i 2229 . . . . 5  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
43oveq2i 5957 . . . 4  |-  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  =  ( ( 2 ^ ( N  +  1 ) )  /  (
2  x.  2 ) )
5 2cn 9109 . . . . . 6  |-  2  e.  CC
6 expp1 10693 . . . . . 6  |-  ( ( 2  e.  CC  /\  N  e.  NN0 )  -> 
( 2 ^ ( N  +  1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
75, 6mpan 424 . . . . 5  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
87oveq1d 5961 . . . 4  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2  x.  2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
94, 8eqtrid 2250 . . 3  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
10 expcl 10704 . . . . 5  |-  ( ( 2  e.  CC  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  CC )
115, 10mpan 424 . . . 4  |-  ( N  e.  NN0  ->  ( 2 ^ N )  e.  CC )
125a1i 9 . . . 4  |-  ( N  e.  NN0  ->  2  e.  CC )
13 2ap0 9131 . . . . 5  |-  2 #  0
1413a1i 9 . . . 4  |-  ( N  e.  NN0  ->  2 #  0 )
1511, 12, 12, 12, 14, 14divmuldivapd 8907 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
16 2div2e1 9171 . . . . 5  |-  ( 2  /  2 )  =  1
1716oveq2i 5957 . . . 4  |-  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( ( 2 ^ N )  / 
2 )  x.  1 )
1811halfcld 9284 . . . . 5  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  e.  CC )
1918mulridd 8091 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  1 )  =  ( ( 2 ^ N )  /  2
) )
2017, 19eqtrid 2250 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( 2 ^ N )  /  2
) )
219, 15, 203eqtr2rd 2245 . 2  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  =  ( ( 2 ^ ( N  +  1 ) )  /  (
2 ^ 2 ) ) )
22 2nn0 9314 . . . 4  |-  2  e.  NN0
23 faclbnd 10888 . . . 4  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2 ^ ( N  +  1 ) )  <_  ( (
2 ^ 2 )  x.  ( ! `  N ) ) )
2422, 23mpan 424 . . 3  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  <_ 
( ( 2 ^ 2 )  x.  ( ! `  N )
) )
25 2re 9108 . . . . 5  |-  2  e.  RR
26 peano2nn0 9337 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
27 reexpcl 10703 . . . . 5  |-  ( ( 2  e.  RR  /\  ( N  +  1
)  e.  NN0 )  ->  ( 2 ^ ( N  +  1 ) )  e.  RR )
2825, 26, 27sylancr 414 . . . 4  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  e.  RR )
29 faccl 10882 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3029nnred 9051 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
31 4re 9115 . . . . . . 7  |-  4  e.  RR
321, 31eqeltri 2278 . . . . . 6  |-  ( 2 ^ 2 )  e.  RR
33 4pos 9135 . . . . . . 7  |-  0  <  4
3433, 1breqtrri 4072 . . . . . 6  |-  0  <  ( 2 ^ 2 )
3532, 34pm3.2i 272 . . . . 5  |-  ( ( 2 ^ 2 )  e.  RR  /\  0  <  ( 2 ^ 2 ) )
36 ledivmul 8952 . . . . 5  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  RR  /\  ( ! `  N )  e.  RR  /\  (
( 2 ^ 2 )  e.  RR  /\  0  <  ( 2 ^ 2 ) ) )  ->  ( ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_ 
( ! `  N
)  <->  ( 2 ^ ( N  +  1 ) )  <_  (
( 2 ^ 2 )  x.  ( ! `
 N ) ) ) )
3735, 36mp3an3 1339 . . . 4  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( ( 2 ^ ( N  + 
1 ) )  / 
( 2 ^ 2 ) )  <_  ( ! `  N )  <->  ( 2 ^ ( N  +  1 ) )  <_  ( ( 2 ^ 2 )  x.  ( ! `  N
) ) ) )
3828, 30, 37syl2anc 411 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_  ( ! `  N )  <->  ( 2 ^ ( N  + 
1 ) )  <_ 
( ( 2 ^ 2 )  x.  ( ! `  N )
) ) )
3924, 38mpbird 167 . 2  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_ 
( ! `  N
) )
4021, 39eqbrtrd 4067 1  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  <_ 
( ! `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    < clt 8109    <_ cle 8110   # cap 8656    / cdiv 8747   2c2 9089   4c4 9091   NN0cn0 9297   ^cexp 10685   !cfa 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-seqfrec 10595  df-exp 10686  df-fac 10873
This theorem is referenced by:  ege2le3  12015
  Copyright terms: Public domain W3C validator