| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > faclbnd2 | Unicode version | ||
| Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
| Ref | Expression |
|---|---|
| faclbnd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq2 10817 |
. . . . . 6
| |
| 2 | 2t2e4 9226 |
. . . . . 6
| |
| 3 | 1, 2 | eqtr4i 2231 |
. . . . 5
|
| 4 | 3 | oveq2i 5978 |
. . . 4
|
| 5 | 2cn 9142 |
. . . . . 6
| |
| 6 | expp1 10728 |
. . . . . 6
| |
| 7 | 5, 6 | mpan 424 |
. . . . 5
|
| 8 | 7 | oveq1d 5982 |
. . . 4
|
| 9 | 4, 8 | eqtrid 2252 |
. . 3
|
| 10 | expcl 10739 |
. . . . 5
| |
| 11 | 5, 10 | mpan 424 |
. . . 4
|
| 12 | 5 | a1i 9 |
. . . 4
|
| 13 | 2ap0 9164 |
. . . . 5
| |
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | 11, 12, 12, 12, 14, 14 | divmuldivapd 8940 |
. . 3
|
| 16 | 2div2e1 9204 |
. . . . 5
| |
| 17 | 16 | oveq2i 5978 |
. . . 4
|
| 18 | 11 | halfcld 9317 |
. . . . 5
|
| 19 | 18 | mulridd 8124 |
. . . 4
|
| 20 | 17, 19 | eqtrid 2252 |
. . 3
|
| 21 | 9, 15, 20 | 3eqtr2rd 2247 |
. 2
|
| 22 | 2nn0 9347 |
. . . 4
| |
| 23 | faclbnd 10923 |
. . . 4
| |
| 24 | 22, 23 | mpan 424 |
. . 3
|
| 25 | 2re 9141 |
. . . . 5
| |
| 26 | peano2nn0 9370 |
. . . . 5
| |
| 27 | reexpcl 10738 |
. . . . 5
| |
| 28 | 25, 26, 27 | sylancr 414 |
. . . 4
|
| 29 | faccl 10917 |
. . . . 5
| |
| 30 | 29 | nnred 9084 |
. . . 4
|
| 31 | 4re 9148 |
. . . . . . 7
| |
| 32 | 1, 31 | eqeltri 2280 |
. . . . . 6
|
| 33 | 4pos 9168 |
. . . . . . 7
| |
| 34 | 33, 1 | breqtrri 4086 |
. . . . . 6
|
| 35 | 32, 34 | pm3.2i 272 |
. . . . 5
|
| 36 | ledivmul 8985 |
. . . . 5
| |
| 37 | 35, 36 | mp3an3 1339 |
. . . 4
|
| 38 | 28, 30, 37 | syl2anc 411 |
. . 3
|
| 39 | 24, 38 | mpbird 167 |
. 2
|
| 40 | 21, 39 | eqbrtrd 4081 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 df-fac 10908 |
| This theorem is referenced by: ege2le3 12097 |
| Copyright terms: Public domain | W3C validator |