ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd2 Unicode version

Theorem faclbnd2 10381
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd2  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  <_ 
( ! `  N
) )

Proof of Theorem faclbnd2
StepHypRef Expression
1 sq2 10281 . . . . . 6  |-  ( 2 ^ 2 )  =  4
2 2t2e4 8778 . . . . . 6  |-  ( 2  x.  2 )  =  4
31, 2eqtr4i 2138 . . . . 5  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
43oveq2i 5739 . . . 4  |-  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  =  ( ( 2 ^ ( N  +  1 ) )  /  (
2  x.  2 ) )
5 2cn 8701 . . . . . 6  |-  2  e.  CC
6 expp1 10193 . . . . . 6  |-  ( ( 2  e.  CC  /\  N  e.  NN0 )  -> 
( 2 ^ ( N  +  1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
75, 6mpan 418 . . . . 5  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
87oveq1d 5743 . . . 4  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2  x.  2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
94, 8syl5eq 2159 . . 3  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
10 expcl 10204 . . . . 5  |-  ( ( 2  e.  CC  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  CC )
115, 10mpan 418 . . . 4  |-  ( N  e.  NN0  ->  ( 2 ^ N )  e.  CC )
125a1i 9 . . . 4  |-  ( N  e.  NN0  ->  2  e.  CC )
13 2ap0 8723 . . . . 5  |-  2 #  0
1413a1i 9 . . . 4  |-  ( N  e.  NN0  ->  2 #  0 )
1511, 12, 12, 12, 14, 14divmuldivapd 8505 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
16 2div2e1 8756 . . . . 5  |-  ( 2  /  2 )  =  1
1716oveq2i 5739 . . . 4  |-  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( ( 2 ^ N )  / 
2 )  x.  1 )
1811halfcld 8868 . . . . 5  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  e.  CC )
1918mulid1d 7707 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  1 )  =  ( ( 2 ^ N )  /  2
) )
2017, 19syl5eq 2159 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( 2 ^ N )  /  2
) )
219, 15, 203eqtr2rd 2154 . 2  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  =  ( ( 2 ^ ( N  +  1 ) )  /  (
2 ^ 2 ) ) )
22 2nn0 8898 . . . 4  |-  2  e.  NN0
23 faclbnd 10380 . . . 4  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2 ^ ( N  +  1 ) )  <_  ( (
2 ^ 2 )  x.  ( ! `  N ) ) )
2422, 23mpan 418 . . 3  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  <_ 
( ( 2 ^ 2 )  x.  ( ! `  N )
) )
25 2re 8700 . . . . 5  |-  2  e.  RR
26 peano2nn0 8921 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
27 reexpcl 10203 . . . . 5  |-  ( ( 2  e.  RR  /\  ( N  +  1
)  e.  NN0 )  ->  ( 2 ^ ( N  +  1 ) )  e.  RR )
2825, 26, 27sylancr 408 . . . 4  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  e.  RR )
29 faccl 10374 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3029nnred 8643 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
31 4re 8707 . . . . . . 7  |-  4  e.  RR
321, 31eqeltri 2187 . . . . . 6  |-  ( 2 ^ 2 )  e.  RR
33 4pos 8727 . . . . . . 7  |-  0  <  4
3433, 1breqtrri 3920 . . . . . 6  |-  0  <  ( 2 ^ 2 )
3532, 34pm3.2i 268 . . . . 5  |-  ( ( 2 ^ 2 )  e.  RR  /\  0  <  ( 2 ^ 2 ) )
36 ledivmul 8545 . . . . 5  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  RR  /\  ( ! `  N )  e.  RR  /\  (
( 2 ^ 2 )  e.  RR  /\  0  <  ( 2 ^ 2 ) ) )  ->  ( ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_ 
( ! `  N
)  <->  ( 2 ^ ( N  +  1 ) )  <_  (
( 2 ^ 2 )  x.  ( ! `
 N ) ) ) )
3735, 36mp3an3 1287 . . . 4  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( ( 2 ^ ( N  + 
1 ) )  / 
( 2 ^ 2 ) )  <_  ( ! `  N )  <->  ( 2 ^ ( N  +  1 ) )  <_  ( ( 2 ^ 2 )  x.  ( ! `  N
) ) ) )
3828, 30, 37syl2anc 406 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_  ( ! `  N )  <->  ( 2 ^ ( N  + 
1 ) )  <_ 
( ( 2 ^ 2 )  x.  ( ! `  N )
) ) )
3924, 38mpbird 166 . 2  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_ 
( ! `  N
) )
4021, 39eqbrtrd 3915 1  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  <_ 
( ! `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   class class class wbr 3895   ` cfv 5081  (class class class)co 5728   CCcc 7545   RRcr 7546   0cc0 7547   1c1 7548    + caddc 7550    x. cmul 7552    < clt 7724    <_ cle 7725   # cap 8261    / cdiv 8345   2c2 8681   4c4 8683   NN0cn0 8881   ^cexp 10185   !cfa 10364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-rp 9344  df-seqfrec 10112  df-exp 10186  df-fac 10365
This theorem is referenced by:  ege2le3  11228
  Copyright terms: Public domain W3C validator