ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquad2lem1 Unicode version

Theorem lgsquad2lem1 15725
Description: Lemma for lgsquad2 15727. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
lgsquad2lem1.a  |-  ( ph  ->  A  e.  NN )
lgsquad2lem1.b  |-  ( ph  ->  B  e.  NN )
lgsquad2lem1.m  |-  ( ph  ->  ( A  x.  B
)  =  M )
lgsquad2lem1.1  |-  ( ph  ->  ( ( A  /L N )  x.  ( N  /L
A ) )  =  ( -u 1 ^ ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
lgsquad2lem1.2  |-  ( ph  ->  ( ( B  /L N )  x.  ( N  /L
B ) )  =  ( -u 1 ^ ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Assertion
Ref Expression
lgsquad2lem1  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )

Proof of Theorem lgsquad2lem1
StepHypRef Expression
1 lgsquad2lem1.m . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  B
)  =  M )
2 lgsquad2lem1.a . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  NN )
32nnzd 9536 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  ZZ )
43zcnd 9538 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  CC )
5 ax-1cn 8060 . . . . . . . . . . . . . 14  |-  1  e.  CC
6 npcan 8323 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
74, 5, 6sylancl 413 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  - 
1 )  +  1 )  =  A )
8 lgsquad2lem1.b . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  NN )
98nnzd 9536 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  ZZ )
109zcnd 9538 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  CC )
11 npcan 8323 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
1210, 5, 11sylancl 413 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  - 
1 )  +  1 )  =  B )
137, 12oveq12d 5992 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( A  x.  B ) )
14 peano2zm 9452 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
153, 14syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  1 )  e.  ZZ )
1615zcnd 9538 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  -  1 )  e.  CC )
175a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  CC )
18 peano2zm 9452 . . . . . . . . . . . . . . . 16  |-  ( B  e.  ZZ  ->  ( B  -  1 )  e.  ZZ )
199, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  1 )  e.  ZZ )
2019zcnd 9538 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  -  1 )  e.  CC )
2116, 17, 20, 17muladdd 8530 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  ( 1  x.  1 ) )  +  ( ( ( A  -  1 )  x.  1 )  +  ( ( B  - 
1 )  x.  1 ) ) ) )
22 1t1e1 9231 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  1 )  =  1
2322a1i 9 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  1 )  =  1 )
2423oveq2d 5990 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 ) )
2516mulridd 8131 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  - 
1 )  x.  1 )  =  ( A  -  1 ) )
2620mulridd 8131 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  - 
1 )  x.  1 )  =  ( B  -  1 ) )
2725, 26oveq12d 5992 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -  1 )  x.  1 )  +  ( ( B  -  1 )  x.  1 ) )  =  ( ( A  -  1 )  +  ( B  - 
1 ) ) )
2824, 27oveq12d 5992 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  ( 1  x.  1 ) )  +  ( ( ( A  - 
1 )  x.  1 )  +  ( ( B  -  1 )  x.  1 ) ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
2921, 28eqtrd 2242 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
3013, 29eqtr3d 2244 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  B
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
311, 30eqtr3d 2244 . . . . . . . . . 10  |-  ( ph  ->  M  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
3231oveq1d 5989 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  =  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  - 
1 ) ) )  -  1 ) )
3316, 20mulcld 8135 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC )
34 addcl 8092 . . . . . . . . . . 11  |-  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  e.  CC )
3533, 5, 34sylancl 413 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  e.  CC )
3616, 20addcld 8134 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  - 
1 )  +  ( B  -  1 ) )  e.  CC )
3735, 36, 17addsubd 8446 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  - 
1 )  +  ( B  -  1 ) ) )  -  1 )  =  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  -  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
38 pncan 8320 . . . . . . . . . . 11  |-  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  1 )  -  1 )  =  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
3933, 5, 38sylancl 413 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  1 )  -  1 )  =  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
4039oveq1d 5989 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  - 
1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
4132, 37, 403eqtrd 2246 . . . . . . . 8  |-  ( ph  ->  ( M  -  1 )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
4241oveq1d 5989 . . . . . . 7  |-  ( ph  ->  ( ( M  - 
1 )  /  2
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  - 
1 ) ) )  /  2 ) )
43 2cnd 9151 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
44 2ap0 9171 . . . . . . . . 9  |-  2 #  0
4544a1i 9 . . . . . . . 8  |-  ( ph  ->  2 #  0 )
4633, 36, 43, 45divdirapd 8944 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  ( ( A  - 
1 )  +  ( B  -  1 ) ) )  /  2
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  /  2 )  +  ( ( ( A  -  1 )  +  ( B  - 
1 ) )  / 
2 ) ) )
4716, 20, 43, 45divassapd 8941 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  /  2
)  =  ( ( A  -  1 )  x.  ( ( B  -  1 )  / 
2 ) ) )
4816, 43, 45divcanap2d 8907 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  (
( A  -  1 )  /  2 ) )  =  ( A  -  1 ) )
4948oveq1d 5989 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( ( A  - 
1 )  /  2
) )  x.  (
( B  -  1 )  /  2 ) )  =  ( ( A  -  1 )  x.  ( ( B  -  1 )  / 
2 ) ) )
50 lgsquad2.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  2  ||  M
)
51 dvdsmul1 12290 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
523, 9, 51syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  ||  ( A  x.  B ) )
5352, 1breqtrd 4088 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  ||  M )
54 2z 9442 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
55 lgsquad2.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN )
5655nnzd 9536 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
57 dvdstr 12305 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  M  e.  ZZ )  ->  (
( 2  ||  A  /\  A  ||  M )  ->  2  ||  M
) )
5854, 3, 56, 57mp3an2i 1357 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  ||  A  /\  A  ||  M
)  ->  2  ||  M ) )
5953, 58mpan2d 428 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  ||  A  ->  2  ||  M ) )
6050, 59mtod 667 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  A
)
61 1zzd 9441 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  ZZ )
62 2prm 12615 . . . . . . . . . . . . . 14  |-  2  e.  Prime
63 nprmdvds1 12628 . . . . . . . . . . . . . 14  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
6462, 63mp1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  1
)
65 omoe 12373 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( A  -  1 ) )
663, 60, 61, 64, 65syl22anc 1253 . . . . . . . . . . . 12  |-  ( ph  ->  2  ||  ( A  -  1 ) )
67 2ne0 9170 . . . . . . . . . . . . . 14  |-  2  =/=  0
6867a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  2  =/=  0 )
69 dvdsval2 12267 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( A  -  1 )  e.  ZZ )  -> 
( 2  ||  ( A  -  1 )  <-> 
( ( A  - 
1 )  /  2
)  e.  ZZ ) )
7054, 68, 15, 69mp3an2i 1357 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  ||  ( A  -  1 )  <-> 
( ( A  - 
1 )  /  2
)  e.  ZZ ) )
7166, 70mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  - 
1 )  /  2
)  e.  ZZ )
7271zcnd 9538 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  - 
1 )  /  2
)  e.  CC )
73 dvdsmul2 12291 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  ||  ( A  x.  B ) )
743, 9, 73syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  ||  ( A  x.  B ) )
7574, 1breqtrd 4088 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  ||  M )
76 dvdstr 12305 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  ZZ )  ->  (
( 2  ||  B  /\  B  ||  M )  ->  2  ||  M
) )
7754, 9, 56, 76mp3an2i 1357 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  ||  B  /\  B  ||  M
)  ->  2  ||  M ) )
7875, 77mpan2d 428 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  ||  B  ->  2  ||  M ) )
7950, 78mtod 667 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  B
)
80 omoe 12373 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  ZZ  /\ 
-.  2  ||  B
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( B  -  1 ) )
819, 79, 61, 64, 80syl22anc 1253 . . . . . . . . . . . 12  |-  ( ph  ->  2  ||  ( B  -  1 ) )
82 dvdsval2 12267 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( B  -  1 )  e.  ZZ )  -> 
( 2  ||  ( B  -  1 )  <-> 
( ( B  - 
1 )  /  2
)  e.  ZZ ) )
8354, 68, 19, 82mp3an2i 1357 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  ||  ( B  -  1 )  <-> 
( ( B  - 
1 )  /  2
)  e.  ZZ ) )
8481, 83mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  - 
1 )  /  2
)  e.  ZZ )
8584zcnd 9538 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  - 
1 )  /  2
)  e.  CC )
8643, 72, 85mulassd 8138 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( ( A  - 
1 )  /  2
) )  x.  (
( B  -  1 )  /  2 ) )  =  ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) ) )
8747, 49, 863eqtr2d 2248 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  /  2
)  =  ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) ) )
8816, 20, 43, 45divdirapd 8944 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  +  ( B  -  1 ) )  /  2
)  =  ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) ) )
8987, 88oveq12d 5992 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  / 
2 )  +  ( ( ( A  - 
1 )  +  ( B  -  1 ) )  /  2 ) )  =  ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) ) ) )
9042, 46, 893eqtrd 2246 . . . . . 6  |-  ( ph  ->  ( ( M  - 
1 )  /  2
)  =  ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) ) ) )
9190oveq1d 5989 . . . . 5  |-  ( ph  ->  ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) ) )  x.  ( ( N  -  1 )  / 
2 ) ) )
9254a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  ZZ )
9371, 84zmulcld 9543 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  e.  ZZ )
9492, 93zmulcld 9543 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  e.  ZZ )
9594zcnd 9538 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  e.  CC )
9671, 84zaddcld 9541 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  e.  ZZ )
9796zcnd 9538 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  e.  CC )
98 lgsquad2.3 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
9998nnzd 9536 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
100 lgsquad2.4 . . . . . . . . 9  |-  ( ph  ->  -.  2  ||  N
)
101 omoe 12373 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
10299, 100, 61, 64, 101syl22anc 1253 . . . . . . . 8  |-  ( ph  ->  2  ||  ( N  -  1 ) )
103 peano2zm 9452 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
10499, 103syl 14 . . . . . . . . 9  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
105 dvdsval2 12267 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
10654, 68, 104, 105mp3an2i 1357 . . . . . . . 8  |-  ( ph  ->  ( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
107102, 106mpbid 147 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  ZZ )
108107zcnd 9538 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  CC )
10995, 97, 108adddird 8140 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) )  +  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) ) )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
11093zcnd 9538 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  e.  CC )
11143, 110, 108mulassd 8138 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) ) )  x.  (
( N  -  1 )  /  2 ) )  =  ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
112111oveq1d 5989 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) )  x.  ( ( N  - 
1 )  /  2
) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  =  ( ( 2  x.  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
11391, 109, 1123eqtrd 2246 . . . 4  |-  ( ph  ->  ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( 2  x.  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
114113oveq2d 5990 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
115 neg1cn 9183 . . . . . 6  |-  -u 1  e.  CC
116115a1i 9 . . . . 5  |-  ( ph  -> 
-u 1  e.  CC )
117 neg1ap0 9187 . . . . . 6  |-  -u 1 #  0
118117a1i 9 . . . . 5  |-  ( ph  -> 
-u 1 #  0 )
11993, 107zmulcld 9543 . . . . . 6  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
12092, 119zmulcld 9543 . . . . 5  |-  ( ph  ->  ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  e.  ZZ )
12196, 107zmulcld 9543 . . . . 5  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
122 expaddzap 10772 . . . . 5  |-  ( ( ( -u 1  e.  CC  /\  -u 1 #  0 )  /\  (
( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  e.  ZZ  /\  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
123116, 118, 120, 121, 122syl22anc 1253 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
124 expmulzap 10774 . . . . . . 7  |-  ( ( ( -u 1  e.  CC  /\  -u 1 #  0 )  /\  (
2  e.  ZZ  /\  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )
125116, 118, 92, 119, 124syl22anc 1253 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ 2 ) ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )
126 neg1sqe1 10823 . . . . . . . 8  |-  ( -u
1 ^ 2 )  =  1
127126oveq1i 5984 . . . . . . 7  |-  ( (
-u 1 ^ 2 ) ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )
128 1exp 10757 . . . . . . . 8  |-  ( ( ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) )  e.  ZZ  ->  (
1 ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  1 )
129119, 128syl 14 . . . . . . 7  |-  ( ph  ->  ( 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  =  1 )
130127, 129eqtrid 2254 . . . . . 6  |-  ( ph  ->  ( ( -u 1 ^ 2 ) ^
( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  =  1 )
131125, 130eqtrd 2242 . . . . 5  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  1 )
132131oveq1d 5989 . . . 4  |-  ( ph  ->  ( ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
133123, 132eqtrd 2242 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( 1  x.  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
134116, 118, 121expclzapd 10867 . . . . 5  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  e.  CC )
135134mullidd 8132 . . . 4  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  =  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
13672, 85, 108adddird 8140 . . . . 5  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
137136oveq2d 5990 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
138135, 137eqtrd 2242 . . 3  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  =  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
139114, 133, 1383eqtrd 2246 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
140 lgsquad2lem1.1 . . . 4  |-  ( ph  ->  ( ( A  /L N )  x.  ( N  /L
A ) )  =  ( -u 1 ^ ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
141 lgsquad2lem1.2 . . . 4  |-  ( ph  ->  ( ( B  /L N )  x.  ( N  /L
B ) )  =  ( -u 1 ^ ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
142140, 141oveq12d 5992 . . 3  |-  ( ph  ->  ( ( ( A  /L N )  x.  ( N  /L A ) )  x.  ( ( B  /L N )  x.  ( N  /L B ) ) )  =  ( (
-u 1 ^ (
( ( A  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  ( -u
1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
14371, 107zmulcld 9543 . . . 4  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
14484, 107zmulcld 9543 . . . 4  |-  ( ph  ->  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
145 expaddzap 10772 . . . 4  |-  ( ( ( -u 1  e.  CC  /\  -u 1 #  0 )  /\  (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ  /\  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) )  +  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( ( ( A  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  x.  ( -u 1 ^ ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
146116, 118, 143, 144, 145syl22anc 1253 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) )  +  ( ( ( B  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( -u 1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
147142, 146eqtr4d 2245 . 2  |-  ( ph  ->  ( ( ( A  /L N )  x.  ( N  /L A ) )  x.  ( ( B  /L N )  x.  ( N  /L B ) ) )  =  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
148 lgscl 15658 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
1493, 99, 148syl2anc 411 . . . . 5  |-  ( ph  ->  ( A  /L
N )  e.  ZZ )
150149zcnd 9538 . . . 4  |-  ( ph  ->  ( A  /L
N )  e.  CC )
151 lgscl 15658 . . . . . 6  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B  /L
N )  e.  ZZ )
1529, 99, 151syl2anc 411 . . . . 5  |-  ( ph  ->  ( B  /L
N )  e.  ZZ )
153152zcnd 9538 . . . 4  |-  ( ph  ->  ( B  /L
N )  e.  CC )
154 lgscl 15658 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ )  ->  ( N  /L
A )  e.  ZZ )
15599, 3, 154syl2anc 411 . . . . 5  |-  ( ph  ->  ( N  /L
A )  e.  ZZ )
156155zcnd 9538 . . . 4  |-  ( ph  ->  ( N  /L
A )  e.  CC )
157 lgscl 15658 . . . . . 6  |-  ( ( N  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  /L
B )  e.  ZZ )
15899, 9, 157syl2anc 411 . . . . 5  |-  ( ph  ->  ( N  /L
B )  e.  ZZ )
159158zcnd 9538 . . . 4  |-  ( ph  ->  ( N  /L
B )  e.  CC )
160150, 153, 156, 159mul4d 8269 . . 3  |-  ( ph  ->  ( ( ( A  /L N )  x.  ( B  /L N ) )  x.  ( ( N  /L A )  x.  ( N  /L B ) ) )  =  ( ( ( A  /L
N )  x.  ( N  /L A ) )  x.  ( ( B  /L N )  x.  ( N  /L B ) ) ) )
1612nnne0d 9123 . . . . . 6  |-  ( ph  ->  A  =/=  0 )
1628nnne0d 9123 . . . . . 6  |-  ( ph  ->  B  =/=  0 )
163 lgsdir 15679 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
1643, 9, 99, 161, 162, 163syl32anc 1260 . . . . 5  |-  ( ph  ->  ( ( A  x.  B )  /L
N )  =  ( ( A  /L
N )  x.  ( B  /L N ) ) )
1651oveq1d 5989 . . . . 5  |-  ( ph  ->  ( ( A  x.  B )  /L
N )  =  ( M  /L N ) )
166164, 165eqtr3d 2244 . . . 4  |-  ( ph  ->  ( ( A  /L N )  x.  ( B  /L
N ) )  =  ( M  /L
N ) )
167 lgsdi 15681 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( N  /L ( A  x.  B ) )  =  ( ( N  /L A )  x.  ( N  /L B ) ) )
16899, 3, 9, 161, 162, 167syl32anc 1260 . . . . 5  |-  ( ph  ->  ( N  /L
( A  x.  B
) )  =  ( ( N  /L
A )  x.  ( N  /L B ) ) )
1691oveq2d 5990 . . . . 5  |-  ( ph  ->  ( N  /L
( A  x.  B
) )  =  ( N  /L M ) )
170168, 169eqtr3d 2244 . . . 4  |-  ( ph  ->  ( ( N  /L A )  x.  ( N  /L
B ) )  =  ( N  /L
M ) )
171166, 170oveq12d 5992 . . 3  |-  ( ph  ->  ( ( ( A  /L N )  x.  ( B  /L N ) )  x.  ( ( N  /L A )  x.  ( N  /L B ) ) )  =  ( ( M  /L N )  x.  ( N  /L M ) ) )
172160, 171eqtr3d 2244 . 2  |-  ( ph  ->  ( ( ( A  /L N )  x.  ( N  /L A ) )  x.  ( ( B  /L N )  x.  ( N  /L B ) ) )  =  ( ( M  /L N )  x.  ( N  /L M ) ) )
173139, 147, 1723eqtr2rd 2249 1  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180    =/= wne 2380   class class class wbr 4062  (class class class)co 5974   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    - cmin 8285   -ucneg 8286   # cap 8696    / cdiv 8787   NNcn 9078   2c2 9129   ZZcz 9414   ^cexp 10727    || cdvds 12264    gcd cgcd 12440   Primecprime 12595    /Lclgs 15641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699  df-pc 12774  df-lgs 15642
This theorem is referenced by:  lgsquad2lem2  15726
  Copyright terms: Public domain W3C validator