ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rec1nq Unicode version

Theorem rec1nq 7344
Description: Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.)
Assertion
Ref Expression
rec1nq  |-  ( *Q
`  1Q )  =  1Q

Proof of Theorem rec1nq
StepHypRef Expression
1 1nq 7315 . . . 4  |-  1Q  e.  Q.
2 recclnq 7341 . . . 4  |-  ( 1Q  e.  Q.  ->  ( *Q `  1Q )  e. 
Q. )
31, 2ax-mp 5 . . 3  |-  ( *Q
`  1Q )  e. 
Q.
4 mulcomnqg 7332 . . 3  |-  ( ( ( *Q `  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( *Q `  1Q )  .Q  1Q )  =  ( 1Q  .Q  ( *Q `  1Q ) ) )
53, 1, 4mp2an 424 . 2  |-  ( ( *Q `  1Q )  .Q  1Q )  =  ( 1Q  .Q  ( *Q `  1Q ) )
6 mulidnq 7338 . . 3  |-  ( ( *Q `  1Q )  e.  Q.  ->  (
( *Q `  1Q )  .Q  1Q )  =  ( *Q `  1Q ) )
71, 2, 6mp2b 8 . 2  |-  ( ( *Q `  1Q )  .Q  1Q )  =  ( *Q `  1Q )
8 recidnq 7342 . . 3  |-  ( 1Q  e.  Q.  ->  ( 1Q  .Q  ( *Q `  1Q ) )  =  1Q )
91, 8ax-mp 5 . 2  |-  ( 1Q 
.Q  ( *Q `  1Q ) )  =  1Q
105, 7, 93eqtr3i 2199 1  |-  ( *Q
`  1Q )  =  1Q
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   ` cfv 5196  (class class class)co 5850   Q.cnq 7229   1Qc1q 7230    .Q cmq 7232   *Qcrq 7233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-mi 7255  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-mqqs 7299  df-1nqqs 7300  df-rq 7301
This theorem is referenced by:  recexprlem1ssl  7582  caucvgprlemm  7617  caucvgprprlemmu  7644  caucvgsr  7751
  Copyright terms: Public domain W3C validator