Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6nn | GIF version |
Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
6nn | ⊢ 6 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 8920 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5nn 9021 | . . 3 ⊢ 5 ∈ ℕ | |
3 | peano2nn 8869 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 6 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 1c1 7754 + caddc 7756 ℕcn 8857 5c5 8911 6c6 8912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 |
This theorem is referenced by: 7nn 9023 6nn0 9135 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 6gcd4e2 11928 6lcm4e12 12019 vscandx 12525 vscaid 12526 vscaslid 12527 lmodstrd 12528 ipsstrd 12536 sincos3rdpi 13404 pigt3 13405 ex-dvds 13611 ex-gcd 13612 |
Copyright terms: Public domain | W3C validator |