| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn | GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 9081 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 9183 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 9030 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5934 1c1 7908 + caddc 7910 ℕcn 9018 5c5 9072 6c6 9073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 |
| This theorem is referenced by: 7nn 9185 6nn0 9298 ef01bndlem 11986 sin01bnd 11987 cos01bnd 11988 6gcd4e2 12235 6lcm4e12 12328 vscandx 12907 vscaid 12908 vscaslid 12913 lmodstrd 12914 ipsstrd 12926 psrvalstrd 14348 sincos3rdpi 15233 pigt3 15234 ex-dvds 15530 ex-gcd 15531 |
| Copyright terms: Public domain | W3C validator |