| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn | GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 9119 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 9221 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 9068 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5957 1c1 7946 + caddc 7948 ℕcn 9056 5c5 9110 6c6 9111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 |
| This theorem is referenced by: 7nn 9223 6nn0 9336 ef01bndlem 12142 sin01bnd 12143 cos01bnd 12144 6gcd4e2 12391 6lcm4e12 12484 vscandx 13064 vscaid 13065 vscaslid 13070 lmodstrd 13071 ipsstrd 13083 psrvalstrd 14505 sincos3rdpi 15390 pigt3 15391 ex-dvds 15805 ex-gcd 15806 |
| Copyright terms: Public domain | W3C validator |