![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6nn | GIF version |
Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
6nn | ⊢ 6 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 9045 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5nn 9146 | . . 3 ⊢ 5 ∈ ℕ | |
3 | peano2nn 8994 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 6 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5918 1c1 7873 + caddc 7875 ℕcn 8982 5c5 9036 6c6 9037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 |
This theorem is referenced by: 7nn 9148 6nn0 9261 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 6gcd4e2 12132 6lcm4e12 12225 vscandx 12774 vscaid 12775 vscaslid 12780 lmodstrd 12781 ipsstrd 12793 psrvalstrd 14154 sincos3rdpi 14978 pigt3 14979 ex-dvds 15222 ex-gcd 15223 |
Copyright terms: Public domain | W3C validator |