ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vscaslid Unicode version

Theorem vscaslid 12966
Description: Slot property of  .s. (Contributed by Jim Kingdon, 5-Feb-2023.)
Assertion
Ref Expression
vscaslid  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )

Proof of Theorem vscaslid
StepHypRef Expression
1 df-vsca 12897 . 2  |-  .s  = Slot  6
2 6nn 9201 . 2  |-  6  e.  NN
31, 2ndxslid 12828 1  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175   ` cfv 5270   NNcn 9035   6c6 9090   ndxcnx 12800  Slot cslot 12802   .scvsca 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12806  df-slot 12807  df-vsca 12897
This theorem is referenced by:  lmodvscad  12971  ipsvscad  12984  ressvscag  12987  prdsex  13072  prdsval  13076  islmod  14024  scafvalg  14040  scaffng  14042  rmodislmodlem  14083  rmodislmod  14084  lsssn0  14103  lss1d  14116  lssintclm  14117  ellspsn  14150  sraval  14170  sralemg  14171  srascag  14175  sravscag  14176  sraipg  14177  sraex  14179  zlmval  14360  zlmlemg  14361  zlmsca  14365  zlmvscag  14366  psrval  14399  fnpsr  14400
  Copyright terms: Public domain W3C validator