| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vscaslid | Unicode version | ||
| Description: Slot property of |
| Ref | Expression |
|---|---|
| vscaslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vsca 13041 |
. 2
| |
| 2 | 6nn 9237 |
. 2
| |
| 3 | 1, 2 | ndxslid 12972 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-ndx 12950 df-slot 12951 df-vsca 13041 |
| This theorem is referenced by: lmodvscad 13115 ipsvscad 13128 ressvscag 13131 prdsex 13216 prdsval 13220 islmod 14168 scafvalg 14184 scaffng 14186 rmodislmodlem 14227 rmodislmod 14228 lsssn0 14247 lss1d 14260 lssintclm 14261 ellspsn 14294 sraval 14314 sralemg 14315 srascag 14319 sravscag 14320 sraipg 14321 sraex 14323 zlmval 14504 zlmlemg 14505 zlmsca 14509 zlmvscag 14510 psrval 14543 fnpsr 14544 |
| Copyright terms: Public domain | W3C validator |