ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vscaslid Unicode version

Theorem vscaslid 13110
Description: Slot property of  .s. (Contributed by Jim Kingdon, 5-Feb-2023.)
Assertion
Ref Expression
vscaslid  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )

Proof of Theorem vscaslid
StepHypRef Expression
1 df-vsca 13041 . 2  |-  .s  = Slot  6
2 6nn 9237 . 2  |-  6  e.  NN
31, 2ndxslid 12972 1  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290   NNcn 9071   6c6 9126   ndxcnx 12944  Slot cslot 12946   .scvsca 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-ndx 12950  df-slot 12951  df-vsca 13041
This theorem is referenced by:  lmodvscad  13115  ipsvscad  13128  ressvscag  13131  prdsex  13216  prdsval  13220  islmod  14168  scafvalg  14184  scaffng  14186  rmodislmodlem  14227  rmodislmod  14228  lsssn0  14247  lss1d  14260  lssintclm  14261  ellspsn  14294  sraval  14314  sralemg  14315  srascag  14319  sravscag  14320  sraipg  14321  sraex  14323  zlmval  14504  zlmlemg  14505  zlmsca  14509  zlmvscag  14510  psrval  14543  fnpsr  14544
  Copyright terms: Public domain W3C validator