ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9nn GIF version

Theorem 9nn 9085
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.)
Assertion
Ref Expression
9nn 9 ∈ ℕ

Proof of Theorem 9nn
StepHypRef Expression
1 df-9 8983 . 2 9 = (8 + 1)
2 8nn 9084 . . 3 8 ∈ ℕ
3 peano2nn 8929 . . 3 (8 ∈ ℕ → (8 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (8 + 1) ∈ ℕ
51, 4eqeltri 2250 1 9 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2148  (class class class)co 5874  1c1 7811   + caddc 7813  cn 8917  8c8 8974  9c9 8975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4121  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-iota 5178  df-fv 5224  df-ov 5877  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-5 8979  df-6 8980  df-7 8981  df-8 8982  df-9 8983
This theorem is referenced by:  9nn0  9198  9p1e10  9384  10nn  9397  3dvdsdec  11864  tsetndx  12635  tsetid  12636  tsetslid  12637  tsetndxnn  12638  topgrpstrd  12645  eltpsg  13431  setsmsbasg  13872  2logb9irr  14282  sqrt2cxp2logb9e3  14286  2logb9irrap  14288  ex-gcd  14365
  Copyright terms: Public domain W3C validator