![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9nn | GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 9048 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 9149 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 8994 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5918 1c1 7873 + caddc 7875 ℕcn 8982 8c8 9039 9c9 9040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 |
This theorem is referenced by: 9nn0 9264 9p1e10 9450 10nn 9463 3dvdsdec 12006 tsetndx 12803 tsetid 12804 tsetslid 12805 tsetndxnn 12806 topgrpstrd 12813 psrvalstrd 14154 eltpsg 14208 setsmsbasg 14647 2logb9irr 15103 sqrt2cxp2logb9e3 15107 2logb9irrap 15109 ex-gcd 15223 |
Copyright terms: Public domain | W3C validator |