| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9nn | GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn | ⊢ 9 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 9073 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 9175 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 9019 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 9 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 1c1 7897 + caddc 7899 ℕcn 9007 8c8 9064 9c9 9065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 |
| This theorem is referenced by: 9nn0 9290 9p1e10 9476 10nn 9489 3dvdsdec 12047 tsetndx 12888 tsetid 12889 tsetslid 12890 tsetndxnn 12891 topgrpstrd 12898 imasvalstrd 12972 cnfldstr 14190 psrvalstrd 14298 eltpsg 14360 setsmsbasg 14799 2logb9irr 15291 sqrt2cxp2logb9e3 15295 2logb9irrap 15297 ex-gcd 15461 |
| Copyright terms: Public domain | W3C validator |