Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9nn | GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 8878 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 8979 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 8824 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2227 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2125 (class class class)co 5814 1c1 7712 + caddc 7714 ℕcn 8812 8c8 8869 9c9 8870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-sep 4078 ax-cnex 7802 ax-resscn 7803 ax-1re 7805 ax-addrcl 7808 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-5 8874 df-6 8875 df-7 8876 df-8 8877 df-9 8878 |
This theorem is referenced by: 9nn0 9093 9p1e10 9276 10nn 9289 3dvdsdec 11729 tsetndx 12277 tsetid 12278 tsetslid 12279 topgrpstrd 12280 eltpsg 12377 setsmsbasg 12818 2logb9irr 13227 sqrt2cxp2logb9e3 13231 2logb9irrap 13233 ex-gcd 13245 |
Copyright terms: Public domain | W3C validator |