Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9nn | GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 8923 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 9024 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 8869 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 1c1 7754 + caddc 7756 ℕcn 8857 8c8 8914 9c9 8915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 |
This theorem is referenced by: 9nn0 9138 9p1e10 9324 10nn 9337 3dvdsdec 11802 tsetndx 12543 tsetid 12544 tsetslid 12545 topgrpstrd 12546 eltpsg 12688 setsmsbasg 13129 2logb9irr 13539 sqrt2cxp2logb9e3 13543 2logb9irrap 13545 ex-gcd 13622 |
Copyright terms: Public domain | W3C validator |