| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 9nn | GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| 9nn | ⊢ 9 ∈ ℕ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-9 9056 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 9158 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 9002 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ | 
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 9 ∈ ℕ | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 (class class class)co 5922 1c1 7880 + caddc 7882 ℕcn 8990 8c8 9047 9c9 9048 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 | 
| This theorem is referenced by: 9nn0 9273 9p1e10 9459 10nn 9472 3dvdsdec 12030 tsetndx 12863 tsetid 12864 tsetslid 12865 tsetndxnn 12866 topgrpstrd 12873 cnfldstr 14114 psrvalstrd 14222 eltpsg 14276 setsmsbasg 14715 2logb9irr 15207 sqrt2cxp2logb9e3 15211 2logb9irrap 15213 ex-gcd 15377 | 
| Copyright terms: Public domain | W3C validator |