ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgrpstrd Unicode version

Theorem topgrpstrd 13143
Description: A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
Hypotheses
Ref Expression
topgrpfn.w  |-  W  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }
topgrpfnd.b  |-  ( ph  ->  B  e.  V )
topgrpfnd.p  |-  ( ph  ->  .+  e.  W )
topgrpfnd.j  |-  ( ph  ->  J  e.  X )
Assertion
Ref Expression
topgrpstrd  |-  ( ph  ->  W Struct  <. 1 ,  9
>. )

Proof of Theorem topgrpstrd
StepHypRef Expression
1 topgrpfn.w . 2  |-  W  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }
2 topgrpfnd.b . . 3  |-  ( ph  ->  B  e.  V )
3 topgrpfnd.p . . 3  |-  ( ph  ->  .+  e.  W )
4 topgrpfnd.j . . 3  |-  ( ph  ->  J  e.  X )
5 1nn 9082 . . . 4  |-  1  e.  NN
6 basendx 13002 . . . 4  |-  ( Base `  ndx )  =  1
7 1lt2 9241 . . . 4  |-  1  <  2
8 2nn 9233 . . . 4  |-  2  e.  NN
9 plusgndx 13056 . . . 4  |-  ( +g  ` 
ndx )  =  2
10 2lt9 9275 . . . 4  |-  2  <  9
11 9nn 9240 . . . 4  |-  9  e.  NN
12 tsetndx 13133 . . . 4  |-  (TopSet `  ndx )  =  9
135, 6, 7, 8, 9, 10, 11, 12strle3g 13055 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W  /\  J  e.  X )  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (TopSet ` 
ndx ) ,  J >. } Struct  <. 1 ,  9
>. )
142, 3, 4, 13syl3anc 1250 . 2  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } Struct  <. 1 ,  9
>. )
151, 14eqbrtrid 4094 1  |-  ( ph  ->  W Struct  <. 1 ,  9
>. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   {ctp 3645   <.cop 3646   class class class wbr 4059   ` cfv 5290   1c1 7961   2c2 9122   9c9 9129   Struct cstr 12943   ndxcnx 12944   Basecbs 12947   +g cplusg 13024  TopSetcts 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-struct 12949  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-tset 13043
This theorem is referenced by:  topgrpbasd  13144  topgrpplusgd  13145  topgrptsetd  13146
  Copyright terms: Public domain W3C validator