| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | Unicode version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8071 |
. . 3
| |
| 2 | 1 | ltp1i 8978 |
. 2
|
| 3 | df-2 9095 |
. 2
| |
| 4 | 2, 3 | breqtrri 4071 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4044 (class class class)co 5944
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-2 9095 |
| This theorem is referenced by: 1lt3 9208 1lt4 9211 1lt6 9220 1lt7 9226 1lt8 9233 1lt9 9241 1ne2 9243 1ap2 9244 1le2 9245 halflt1 9254 nn0ge2m1nn 9355 nn0n0n1ge2b 9452 halfnz 9469 1lt10 9642 fztpval 10205 ige2m2fzo 10327 wrdlenge2n0 11029 sqrt2gt1lt2 11360 ege2le3 11982 cos12dec 12079 ene1 12096 eap1 12097 n2dvds1 12223 bits0o 12261 bitsfzolem 12265 bitsfzo 12266 bitsfi 12268 2prm 12449 3prm 12450 4nprm 12451 isprm5 12464 dec2dvds 12734 dec5nprm 12737 dec2nprm 12738 2expltfac 12762 basendxltplusgndx 12945 grpstrg 12958 grpbaseg 12959 grpplusgg 12960 rngstrg 12967 lmodstrd 12996 topgrpstrd 13028 reeff1o 15245 cosz12 15252 2logb9irrALT 15446 sqrt2cxp2logb9e3 15447 mersenne 15469 perfectlem1 15471 perfectlem2 15472 lgseisenlem1 15547 |
| Copyright terms: Public domain | W3C validator |