| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | Unicode version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8145 |
. . 3
| |
| 2 | 1 | ltp1i 9052 |
. 2
|
| 3 | df-2 9169 |
. 2
| |
| 4 | 2, 3 | breqtrri 4110 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4083 (class class class)co 6001
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-2 9169 |
| This theorem is referenced by: 1lt3 9282 1lt4 9285 1lt6 9294 1lt7 9300 1lt8 9307 1lt9 9315 1ne2 9317 1ap2 9318 1le2 9319 halflt1 9328 nn0ge2m1nn 9429 nn0n0n1ge2b 9526 halfnz 9543 1lt10 9716 fztpval 10279 ige2m2fzo 10404 wrdlenge2n0 11107 s3fv1g 11324 sqrt2gt1lt2 11560 ege2le3 12182 cos12dec 12279 ene1 12296 eap1 12297 n2dvds1 12423 bits0o 12461 bitsfzolem 12465 bitsfzo 12466 bitsfi 12468 2prm 12649 3prm 12650 4nprm 12651 isprm5 12664 dec2dvds 12934 dec5nprm 12937 dec2nprm 12938 2expltfac 12962 basendxltplusgndx 13146 grpstrg 13159 grpbaseg 13160 grpplusgg 13161 rngstrg 13168 lmodstrd 13197 topgrpstrd 13229 reeff1o 15447 cosz12 15454 2logb9irrALT 15648 sqrt2cxp2logb9e3 15649 mersenne 15671 perfectlem1 15673 perfectlem2 15674 lgseisenlem1 15749 |
| Copyright terms: Public domain | W3C validator |