| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | Unicode version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8042 |
. . 3
| |
| 2 | 1 | ltp1i 8949 |
. 2
|
| 3 | df-2 9066 |
. 2
| |
| 4 | 2, 3 | breqtrri 4061 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4034 (class class class)co 5925
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-2 9066 |
| This theorem is referenced by: 1lt3 9179 1lt4 9182 1lt6 9191 1lt7 9197 1lt8 9204 1lt9 9212 1ne2 9214 1ap2 9215 1le2 9216 halflt1 9225 nn0ge2m1nn 9326 nn0n0n1ge2b 9422 halfnz 9439 1lt10 9612 fztpval 10175 ige2m2fzo 10291 wrdlenge2n0 10987 sqrt2gt1lt2 11231 ege2le3 11853 cos12dec 11950 ene1 11967 eap1 11968 n2dvds1 12094 bits0o 12132 bitsfzolem 12136 bitsfzo 12137 bitsfi 12139 2prm 12320 3prm 12321 4nprm 12322 isprm5 12335 dec2dvds 12605 dec5nprm 12608 dec2nprm 12609 2expltfac 12633 basendxltplusgndx 12816 grpstrg 12828 grpbaseg 12829 grpplusgg 12830 rngstrg 12837 lmodstrd 12866 topgrpstrd 12898 reeff1o 15093 cosz12 15100 2logb9irrALT 15294 sqrt2cxp2logb9e3 15295 mersenne 15317 perfectlem1 15319 perfectlem2 15320 lgseisenlem1 15395 |
| Copyright terms: Public domain | W3C validator |