| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | Unicode version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8073 |
. . 3
| |
| 2 | 1 | ltp1i 8980 |
. 2
|
| 3 | df-2 9097 |
. 2
| |
| 4 | 2, 3 | breqtrri 4072 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4045 (class class class)co 5946
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-iota 5233 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-2 9097 |
| This theorem is referenced by: 1lt3 9210 1lt4 9213 1lt6 9222 1lt7 9228 1lt8 9235 1lt9 9243 1ne2 9245 1ap2 9246 1le2 9247 halflt1 9256 nn0ge2m1nn 9357 nn0n0n1ge2b 9454 halfnz 9471 1lt10 9644 fztpval 10207 ige2m2fzo 10329 wrdlenge2n0 11031 sqrt2gt1lt2 11393 ege2le3 12015 cos12dec 12112 ene1 12129 eap1 12130 n2dvds1 12256 bits0o 12294 bitsfzolem 12298 bitsfzo 12299 bitsfi 12301 2prm 12482 3prm 12483 4nprm 12484 isprm5 12497 dec2dvds 12767 dec5nprm 12770 dec2nprm 12771 2expltfac 12795 basendxltplusgndx 12978 grpstrg 12991 grpbaseg 12992 grpplusgg 12993 rngstrg 13000 lmodstrd 13029 topgrpstrd 13061 reeff1o 15278 cosz12 15285 2logb9irrALT 15479 sqrt2cxp2logb9e3 15480 mersenne 15502 perfectlem1 15504 perfectlem2 15505 lgseisenlem1 15580 |
| Copyright terms: Public domain | W3C validator |