| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | Unicode version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 1lt2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1re 8025 | 
. . 3
 | |
| 2 | 1 | ltp1i 8932 | 
. 2
 | 
| 3 | df-2 9049 | 
. 2
 | |
| 4 | 2, 3 | breqtrri 4060 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    class class
class wbr 4033  (class class class)co 5922
  | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-2 9049 | 
| This theorem is referenced by: 1lt3 9162 1lt4 9165 1lt6 9174 1lt7 9180 1lt8 9187 1lt9 9195 1ne2 9197 1ap2 9198 1le2 9199 halflt1 9208 nn0ge2m1nn 9309 nn0n0n1ge2b 9405 halfnz 9422 1lt10 9595 fztpval 10158 ige2m2fzo 10274 wrdlenge2n0 10970 sqrt2gt1lt2 11214 ege2le3 11836 cos12dec 11933 ene1 11950 eap1 11951 n2dvds1 12077 bits0o 12114 bitsfzolem 12118 bitsfzo 12119 2prm 12295 3prm 12296 4nprm 12297 isprm5 12310 dec2dvds 12580 dec5nprm 12583 dec2nprm 12584 2expltfac 12608 basendxltplusgndx 12791 grpstrg 12803 grpbaseg 12804 grpplusgg 12805 rngstrg 12812 lmodstrd 12841 topgrpstrd 12873 reeff1o 15009 cosz12 15016 2logb9irrALT 15210 sqrt2cxp2logb9e3 15211 mersenne 15233 perfectlem1 15235 perfectlem2 15236 lgseisenlem1 15311 | 
| Copyright terms: Public domain | W3C validator |