ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcan Unicode version

Theorem subcan 8214
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subcan  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  ( A  -  C )  <->  B  =  C ) )

Proof of Theorem subcan
StepHypRef Expression
1 simp2 998 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
2 simp1 997 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
31, 2addcomd 8110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  +  A )  =  ( A  +  B ) )
43eqeq1d 2186 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  A
)  =  ( A  +  C )  <->  ( A  +  B )  =  ( A  +  C ) ) )
5 simp3 999 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
6 addsubeq4 8174 . . 3  |-  ( ( ( B  e.  CC  /\  A  e.  CC )  /\  ( A  e.  CC  /\  C  e.  CC ) )  -> 
( ( B  +  A )  =  ( A  +  C )  <-> 
( A  -  B
)  =  ( A  -  C ) ) )
71, 2, 2, 5, 6syl22anc 1239 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  A
)  =  ( A  +  C )  <->  ( A  -  B )  =  ( A  -  C ) ) )
8 addcan 8139 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )
94, 7, 83bitr3d 218 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  ( A  -  C )  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148  (class class class)co 5877   CCcc 7811    + caddc 7816    - cmin 8130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132
This theorem is referenced by:  subcani  8252  subcand  8311  subcanad  8313
  Copyright terms: Public domain W3C validator