ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnpncand Unicode version

Theorem pnpncand 8418
Description: Addition/subtraction cancellation law. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
pnpncand.1  |-  ( ph  ->  A  e.  CC )
pnpncand.2  |-  ( ph  ->  B  e.  CC )
pnpncand.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
pnpncand  |-  ( ph  ->  ( ( A  +  ( B  -  C
) )  +  ( C  -  B ) )  =  A )

Proof of Theorem pnpncand
StepHypRef Expression
1 pnpncand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
2 pnpncand.2 . . . . 5  |-  ( ph  ->  B  e.  CC )
3 pnpncand.3 . . . . 5  |-  ( ph  ->  C  e.  CC )
42, 3subcld 8354 . . . 4  |-  ( ph  ->  ( B  -  C
)  e.  CC )
51, 4addcld 8063 . . 3  |-  ( ph  ->  ( A  +  ( B  -  C ) )  e.  CC )
65, 2, 3subsub2d 8383 . 2  |-  ( ph  ->  ( ( A  +  ( B  -  C
) )  -  ( B  -  C )
)  =  ( ( A  +  ( B  -  C ) )  +  ( C  -  B ) ) )
71, 4pncand 8355 . 2  |-  ( ph  ->  ( ( A  +  ( B  -  C
) )  -  ( B  -  C )
)  =  A )
86, 7eqtr3d 2231 1  |-  ( ph  ->  ( ( A  +  ( B  -  C
) )  +  ( C  -  B ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894    + caddc 7899    - cmin 8214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator