![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > algrflemg | GIF version |
Description: Lemma for algrf 12183 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.) |
Ref | Expression |
---|---|
algrflemg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5921 | . 2 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) | |
2 | fo1st 6210 | . . . . 5 ⊢ 1st :V–onto→V | |
3 | fof 5476 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
5 | opexg 4257 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 〈𝐵, 𝐶〉 ∈ V) | |
6 | fvco3 5628 | . . . 4 ⊢ ((1st :V⟶V ∧ 〈𝐵, 𝐶〉 ∈ V) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉))) | |
7 | 4, 5, 6 | sylancr 414 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉))) |
8 | op1stg 6203 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (1st ‘〈𝐵, 𝐶〉) = 𝐵) | |
9 | 8 | fveq2d 5558 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘(1st ‘〈𝐵, 𝐶〉)) = (𝐹‘𝐵)) |
10 | 7, 9 | eqtrd 2226 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘𝐵)) |
11 | 1, 10 | eqtrid 2238 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3621 ∘ ccom 4663 ⟶wf 5250 –onto→wfo 5252 ‘cfv 5254 (class class class)co 5918 1st c1st 6191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fo 5260 df-fv 5262 df-ov 5921 df-1st 6193 |
This theorem is referenced by: ialgrlem1st 12180 algrp1 12184 |
Copyright terms: Public domain | W3C validator |