| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algrflemg | GIF version | ||
| Description: Lemma for algrf 12238 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| algrflemg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5928 | . 2 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) | |
| 2 | fo1st 6224 | . . . . 5 ⊢ 1st :V–onto→V | |
| 3 | fof 5483 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
| 5 | opexg 4262 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 〈𝐵, 𝐶〉 ∈ V) | |
| 6 | fvco3 5635 | . . . 4 ⊢ ((1st :V⟶V ∧ 〈𝐵, 𝐶〉 ∈ V) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉))) | |
| 7 | 4, 5, 6 | sylancr 414 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉))) |
| 8 | op1stg 6217 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (1st ‘〈𝐵, 𝐶〉) = 𝐵) | |
| 9 | 8 | fveq2d 5565 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘(1st ‘〈𝐵, 𝐶〉)) = (𝐹‘𝐵)) |
| 10 | 7, 9 | eqtrd 2229 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘𝐵)) |
| 11 | 1, 10 | eqtrid 2241 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3626 ∘ ccom 4668 ⟶wf 5255 –onto→wfo 5257 ‘cfv 5259 (class class class)co 5925 1st c1st 6205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fo 5265 df-fv 5267 df-ov 5928 df-1st 6207 |
| This theorem is referenced by: ialgrlem1st 12235 algrp1 12239 |
| Copyright terms: Public domain | W3C validator |