![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > algrflemg | GIF version |
Description: Lemma for algrf 12047 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.) |
Ref | Expression |
---|---|
algrflemg | ⢠((šµ ā š ā§ š¶ ā š) ā (šµ(š¹ ā 1st )š¶) = (š¹āšµ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5880 | . 2 ⢠(šµ(š¹ ā 1st )š¶) = ((š¹ ā 1st )āāØšµ, š¶ā©) | |
2 | fo1st 6160 | . . . . 5 ⢠1st :VāontoāV | |
3 | fof 5440 | . . . . 5 ⢠(1st :VāontoāV ā 1st :Vā¶V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⢠1st :Vā¶V |
5 | opexg 4230 | . . . 4 ⢠((šµ ā š ā§ š¶ ā š) ā āØšµ, š¶ā© ā V) | |
6 | fvco3 5589 | . . . 4 ⢠((1st :Vā¶V ā§ āØšµ, š¶ā© ā V) ā ((š¹ ā 1st )āāØšµ, š¶ā©) = (š¹ā(1st āāØšµ, š¶ā©))) | |
7 | 4, 5, 6 | sylancr 414 | . . 3 ⢠((šµ ā š ā§ š¶ ā š) ā ((š¹ ā 1st )āāØšµ, š¶ā©) = (š¹ā(1st āāØšµ, š¶ā©))) |
8 | op1stg 6153 | . . . 4 ⢠((šµ ā š ā§ š¶ ā š) ā (1st āāØšµ, š¶ā©) = šµ) | |
9 | 8 | fveq2d 5521 | . . 3 ⢠((šµ ā š ā§ š¶ ā š) ā (š¹ā(1st āāØšµ, š¶ā©)) = (š¹āšµ)) |
10 | 7, 9 | eqtrd 2210 | . 2 ⢠((šµ ā š ā§ š¶ ā š) ā ((š¹ ā 1st )āāØšµ, š¶ā©) = (š¹āšµ)) |
11 | 1, 10 | eqtrid 2222 | 1 ⢠((šµ ā š ā§ š¶ ā š) ā (šµ(š¹ ā 1st )š¶) = (š¹āšµ)) |
Colors of variables: wff set class |
Syntax hints: ā wi 4 ā§ wa 104 = wceq 1353 ā wcel 2148 Vcvv 2739 āØcop 3597 ā ccom 4632 ā¶wf 5214 āontoāwfo 5216 ācfv 5218 (class class class)co 5877 1st c1st 6141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 df-ov 5880 df-1st 6143 |
This theorem is referenced by: ialgrlem1st 12044 algrp1 12048 |
Copyright terms: Public domain | W3C validator |