ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflemg GIF version

Theorem algrflemg 6285
Description: Lemma for algrf 12186 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
Assertion
Ref Expression
algrflemg ((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))

Proof of Theorem algrflemg
StepHypRef Expression
1 df-ov 5922 . 2 (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩)
2 fo1st 6212 . . . . 5 1st :V–onto→V
3 fof 5477 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 5 . . . 4 1st :V⟶V
5 opexg 4258 . . . 4 ((𝐵𝑉𝐶𝑊) → ⟨𝐵, 𝐶⟩ ∈ V)
6 fvco3 5629 . . . 4 ((1st :V⟶V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
74, 5, 6sylancr 414 . . 3 ((𝐵𝑉𝐶𝑊) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
8 op1stg 6205 . . . 4 ((𝐵𝑉𝐶𝑊) → (1st ‘⟨𝐵, 𝐶⟩) = 𝐵)
98fveq2d 5559 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)) = (𝐹𝐵))
107, 9eqtrd 2226 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹𝐵))
111, 10eqtrid 2238 1 ((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cop 3622  ccom 4664  wf 5251  ontowfo 5253  cfv 5255  (class class class)co 5919  1st c1st 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5922  df-1st 6195
This theorem is referenced by:  ialgrlem1st  12183  algrp1  12187
  Copyright terms: Public domain W3C validator