ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflemg GIF version

Theorem algrflemg 6209
Description: Lemma for algrf 11999 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
Assertion
Ref Expression
algrflemg ((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))

Proof of Theorem algrflemg
StepHypRef Expression
1 df-ov 5856 . 2 (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩)
2 fo1st 6136 . . . . 5 1st :V–onto→V
3 fof 5420 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 5 . . . 4 1st :V⟶V
5 opexg 4213 . . . 4 ((𝐵𝑉𝐶𝑊) → ⟨𝐵, 𝐶⟩ ∈ V)
6 fvco3 5567 . . . 4 ((1st :V⟶V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
74, 5, 6sylancr 412 . . 3 ((𝐵𝑉𝐶𝑊) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
8 op1stg 6129 . . . 4 ((𝐵𝑉𝐶𝑊) → (1st ‘⟨𝐵, 𝐶⟩) = 𝐵)
98fveq2d 5500 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)) = (𝐹𝐵))
107, 9eqtrd 2203 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹𝐵))
111, 10eqtrid 2215 1 ((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cop 3586  ccom 4615  wf 5194  ontowfo 5196  cfv 5198  (class class class)co 5853  1st c1st 6117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-ov 5856  df-1st 6119
This theorem is referenced by:  ialgrlem1st  11996  algrp1  12000
  Copyright terms: Public domain W3C validator