ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflemg GIF version

Theorem algrflemg 6233
Description: Lemma for algrf 12047 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
Assertion
Ref Expression
algrflemg ((šµ ∈ š‘‰ ∧ š¶ ∈ š‘Š) → (šµ(š¹ ∘ 1st )š¶) = (š¹ā€˜šµ))

Proof of Theorem algrflemg
StepHypRef Expression
1 df-ov 5880 . 2 (šµ(š¹ ∘ 1st )š¶) = ((š¹ ∘ 1st )ā€˜āŸØšµ, š¶āŸ©)
2 fo1st 6160 . . . . 5 1st :V–onto→V
3 fof 5440 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 5 . . . 4 1st :V⟶V
5 opexg 4230 . . . 4 ((šµ ∈ š‘‰ ∧ š¶ ∈ š‘Š) → āŸØšµ, š¶āŸ© ∈ V)
6 fvco3 5589 . . . 4 ((1st :V⟶V ∧ āŸØšµ, š¶āŸ© ∈ V) → ((š¹ ∘ 1st )ā€˜āŸØšµ, š¶āŸ©) = (š¹ā€˜(1st ā€˜āŸØšµ, š¶āŸ©)))
74, 5, 6sylancr 414 . . 3 ((šµ ∈ š‘‰ ∧ š¶ ∈ š‘Š) → ((š¹ ∘ 1st )ā€˜āŸØšµ, š¶āŸ©) = (š¹ā€˜(1st ā€˜āŸØšµ, š¶āŸ©)))
8 op1stg 6153 . . . 4 ((šµ ∈ š‘‰ ∧ š¶ ∈ š‘Š) → (1st ā€˜āŸØšµ, š¶āŸ©) = šµ)
98fveq2d 5521 . . 3 ((šµ ∈ š‘‰ ∧ š¶ ∈ š‘Š) → (š¹ā€˜(1st ā€˜āŸØšµ, š¶āŸ©)) = (š¹ā€˜šµ))
107, 9eqtrd 2210 . 2 ((šµ ∈ š‘‰ ∧ š¶ ∈ š‘Š) → ((š¹ ∘ 1st )ā€˜āŸØšµ, š¶āŸ©) = (š¹ā€˜šµ))
111, 10eqtrid 2222 1 ((šµ ∈ š‘‰ ∧ š¶ ∈ š‘Š) → (šµ(š¹ ∘ 1st )š¶) = (š¹ā€˜šµ))
Colors of variables: wff set class
Syntax hints:   → wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  Vcvv 2739  āŸØcop 3597   ∘ ccom 4632  āŸ¶wf 5214  ā€“onto→wfo 5216  ā€˜cfv 5218  (class class class)co 5877  1st c1st 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-ov 5880  df-1st 6143
This theorem is referenced by:  ialgrlem1st  12044  algrp1  12048
  Copyright terms: Public domain W3C validator