| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algrflemg | GIF version | ||
| Description: Lemma for algrf 12286 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| algrflemg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5937 | . 2 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) | |
| 2 | fo1st 6233 | . . . . 5 ⊢ 1st :V–onto→V | |
| 3 | fof 5492 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
| 5 | opexg 4271 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 〈𝐵, 𝐶〉 ∈ V) | |
| 6 | fvco3 5644 | . . . 4 ⊢ ((1st :V⟶V ∧ 〈𝐵, 𝐶〉 ∈ V) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉))) | |
| 7 | 4, 5, 6 | sylancr 414 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉))) |
| 8 | op1stg 6226 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (1st ‘〈𝐵, 𝐶〉) = 𝐵) | |
| 9 | 8 | fveq2d 5574 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘(1st ‘〈𝐵, 𝐶〉)) = (𝐹‘𝐵)) |
| 10 | 7, 9 | eqtrd 2237 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘𝐵)) |
| 11 | 1, 10 | eqtrid 2249 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 Vcvv 2771 〈cop 3635 ∘ ccom 4677 ⟶wf 5264 –onto→wfo 5266 ‘cfv 5268 (class class class)co 5934 1st c1st 6214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fo 5274 df-fv 5276 df-ov 5937 df-1st 6216 |
| This theorem is referenced by: ialgrlem1st 12283 algrp1 12287 |
| Copyright terms: Public domain | W3C validator |