ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelbasov Unicode version

Theorem relelbasov 12683
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
elbasov.o  |-  Rel  dom  O
relelbasov.r  |-  Rel  O
elbasov.s  |-  S  =  ( X O Y )
elbasov.b  |-  B  =  ( Base `  S
)
Assertion
Ref Expression
relelbasov  |-  ( A  e.  B  ->  ( X  e.  _V  /\  Y  e.  _V ) )

Proof of Theorem relelbasov
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 elbasov.b . . 3  |-  B  =  ( Base `  S
)
21basm 12682 . 2  |-  ( A  e.  B  ->  E. j 
j  e.  S )
3 elbasov.o . . . . 5  |-  Rel  dom  O
4 df-rel 4667 . . . . 5  |-  ( Rel 
dom  O  <->  dom  O  C_  ( _V  X.  _V ) )
53, 4mpbi 145 . . . 4  |-  dom  O  C_  ( _V  X.  _V )
6 relelbasov.r . . . . 5  |-  Rel  O
7 simpr 110 . . . . . . 7  |-  ( ( A  e.  B  /\  j  e.  S )  ->  j  e.  S )
8 elbasov.s . . . . . . 7  |-  S  =  ( X O Y )
97, 8eleqtrdi 2286 . . . . . 6  |-  ( ( A  e.  B  /\  j  e.  S )  ->  j  e.  ( X O Y ) )
10 df-ov 5922 . . . . . 6  |-  ( X O Y )  =  ( O `  <. X ,  Y >. )
119, 10eleqtrdi 2286 . . . . 5  |-  ( ( A  e.  B  /\  j  e.  S )  ->  j  e.  ( O `
 <. X ,  Y >. ) )
12 relelfvdm 5587 . . . . 5  |-  ( ( Rel  O  /\  j  e.  ( O `  <. X ,  Y >. )
)  ->  <. X ,  Y >.  e.  dom  O
)
136, 11, 12sylancr 414 . . . 4  |-  ( ( A  e.  B  /\  j  e.  S )  -> 
<. X ,  Y >.  e. 
dom  O )
145, 13sselid 3178 . . 3  |-  ( ( A  e.  B  /\  j  e.  S )  -> 
<. X ,  Y >.  e.  ( _V  X.  _V ) )
15 opelxp 4690 . . 3  |-  ( <. X ,  Y >.  e.  ( _V  X.  _V ) 
<->  ( X  e.  _V  /\  Y  e.  _V )
)
1614, 15sylib 122 . 2  |-  ( ( A  e.  B  /\  j  e.  S )  ->  ( X  e.  _V  /\  Y  e.  _V )
)
172, 16exlimddv 1910 1  |-  ( A  e.  B  ->  ( X  e.  _V  /\  Y  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3154   <.cop 3622    X. cxp 4658   dom cdm 4660   Rel wrel 4665   ` cfv 5255  (class class class)co 5919   Basecbs 12621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627
This theorem is referenced by:  psrelbas  14171  psradd  14174  psraddcl  14175
  Copyright terms: Public domain W3C validator