ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsfzo Unicode version

Theorem bitsfzo 12139
Description: The bits of a number are all at positions less than  M iff the number is nonnegative and less than  2 ^ M. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
bitsfzo  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  e.  ( 0..^ ( 2 ^ M ) )  <->  (bits `  N
)  C_  ( 0..^ M ) ) )

Proof of Theorem bitsfzo
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsval 12127 . . . 4  |-  ( m  e.  (bits `  N
)  <->  ( N  e.  ZZ  /\  m  e. 
NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
2 simp32 1036 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  e.  NN0 )
3 nn0uz 9655 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtrdi 2289 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  e.  ( ZZ>= `  0 )
)
5 simp1r 1024 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  M  e.  NN0 )
65nn0zd 9465 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  M  e.  ZZ )
7 2re 9079 . . . . . . . . . 10  |-  2  e.  RR
87a1i 9 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  2  e.  RR )
98, 2reexpcld 10801 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  e.  RR )
10 simp1l 1023 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  N  e.  ZZ )
1110zred 9467 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  N  e.  RR )
128, 5reexpcld 10801 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ M )  e.  RR )
139recnd 8074 . . . . . . . . . 10  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  e.  CC )
1413mullidd 8063 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 1  x.  ( 2 ^ m ) )  =  ( 2 ^ m
) )
15 1z 9371 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
16 zq 9719 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
1715, 16ax-mp 5 . . . . . . . . . . . . 13  |-  1  e.  QQ
1817a1i 9 . . . . . . . . . . . 12  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  1  e.  QQ )
19 2nn 9171 . . . . . . . . . . . . . . 15  |-  2  e.  NN
2019a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  2  e.  NN )
2120, 2nnexpcld 10806 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  e.  NN )
22 znq 9717 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( 2 ^ m
)  e.  NN )  ->  ( N  / 
( 2 ^ m
) )  e.  QQ )
2310, 21, 22syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( N  /  ( 2 ^ m ) )  e.  QQ )
24 qdcle 10355 . . . . . . . . . . . 12  |-  ( ( 1  e.  QQ  /\  ( N  /  (
2 ^ m ) )  e.  QQ )  -> DECID  1  <_  ( N  /  ( 2 ^ m ) ) )
2518, 23, 24syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  -> DECID  1  <_  ( N  /  ( 2 ^ m ) ) )
26 simp33 1037 . . . . . . . . . . . 12  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )
27 qltnle 10352 . . . . . . . . . . . . . 14  |-  ( ( ( N  /  (
2 ^ m ) )  e.  QQ  /\  1  e.  QQ )  ->  ( ( N  / 
( 2 ^ m
) )  <  1  <->  -.  1  <_  ( N  /  ( 2 ^ m ) ) ) )
2823, 18, 27syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( ( N  /  ( 2 ^ m ) )  <  1  <->  -.  1  <_  ( N  /  ( 2 ^ m ) ) ) )
29 0p1e1 9123 . . . . . . . . . . . . . . 15  |-  ( 0  +  1 )  =  1
3029breq2i 4042 . . . . . . . . . . . . . 14  |-  ( ( N  /  ( 2 ^ m ) )  <  ( 0  +  1 )  <->  ( N  /  ( 2 ^ m ) )  <  1 )
31 2rp 9752 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR+
3231a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  2  e.  RR+ )
332nn0zd 9465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  e.  ZZ )
3432, 33rpexpcld 10808 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  e.  RR+ )
35 elfzole1 10250 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( 0..^ ( 2 ^ M ) )  ->  0  <_  N )
36353ad2ant2 1021 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  0  <_  N )
3711, 34, 36divge0d 9831 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  0  <_  ( N  /  ( 2 ^ m ) ) )
38 0z 9356 . . . . . . . . . . . . . . . . 17  |-  0  e.  ZZ
39 flqbi 10399 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  /  (
2 ^ m ) )  e.  QQ  /\  0  e.  ZZ )  ->  ( ( |_ `  ( N  /  (
2 ^ m ) ) )  =  0  <-> 
( 0  <_  ( N  /  ( 2 ^ m ) )  /\  ( N  /  (
2 ^ m ) )  <  ( 0  +  1 ) ) ) )
4023, 38, 39sylancl 413 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( ( |_ `  ( N  / 
( 2 ^ m
) ) )  =  0  <->  ( 0  <_ 
( N  /  (
2 ^ m ) )  /\  ( N  /  ( 2 ^ m ) )  < 
( 0  +  1 ) ) ) )
41 z0even 12095 . . . . . . . . . . . . . . . . 17  |-  2  ||  0
42 id 19 . . . . . . . . . . . . . . . . 17  |-  ( ( |_ `  ( N  /  ( 2 ^ m ) ) )  =  0  ->  ( |_ `  ( N  / 
( 2 ^ m
) ) )  =  0 )
4341, 42breqtrrid 4072 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( N  /  ( 2 ^ m ) ) )  =  0  ->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )
4440, 43biimtrrdi 164 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( (
0  <_  ( N  /  ( 2 ^ m ) )  /\  ( N  /  (
2 ^ m ) )  <  ( 0  +  1 ) )  ->  2  ||  ( |_ `  ( N  / 
( 2 ^ m
) ) ) ) )
4537, 44mpand 429 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( ( N  /  ( 2 ^ m ) )  < 
( 0  +  1 )  ->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
4630, 45biimtrrid 153 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( ( N  /  ( 2 ^ m ) )  <  1  ->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
4728, 46sylbird 170 . . . . . . . . . . . 12  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( -.  1  <_  ( N  / 
( 2 ^ m
) )  ->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
4826, 47mtod 664 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  -.  -.  1  <_  ( N  /  (
2 ^ m ) ) )
49 notnotrdc 844 . . . . . . . . . . 11  |-  (DECID  1  <_ 
( N  /  (
2 ^ m ) )  ->  ( -.  -.  1  <_  ( N  /  ( 2 ^ m ) )  -> 
1  <_  ( N  /  ( 2 ^ m ) ) ) )
5025, 48, 49sylc 62 . . . . . . . . . 10  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  1  <_  ( N  /  ( 2 ^ m ) ) )
51 1red 8060 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  1  e.  RR )
5251, 11, 34lemuldivd 9840 . . . . . . . . . 10  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( (
1  x.  ( 2 ^ m ) )  <_  N  <->  1  <_  ( N  /  ( 2 ^ m ) ) ) )
5350, 52mpbird 167 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 1  x.  ( 2 ^ m ) )  <_  N )
5414, 53eqbrtrrd 4058 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  <_  N )
55 elfzolt2 10251 . . . . . . . . 9  |-  ( N  e.  ( 0..^ ( 2 ^ M ) )  ->  N  <  ( 2 ^ M ) )
56553ad2ant2 1021 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  N  <  ( 2 ^ M ) )
579, 11, 12, 54, 56lelttrd 8170 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  < 
( 2 ^ M
) )
58 1lt2 9179 . . . . . . . . 9  |-  1  <  2
5958a1i 9 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  1  <  2 )
60 nn0ltexp2 10820 . . . . . . . 8  |-  ( ( ( 2  e.  RR  /\  m  e.  NN0  /\  M  e.  NN0 )  /\  1  <  2 )  -> 
( m  <  M  <->  ( 2 ^ m )  <  ( 2 ^ M ) ) )
618, 2, 5, 59, 60syl31anc 1252 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( m  <  M  <->  ( 2 ^ m )  <  (
2 ^ M ) ) )
6257, 61mpbird 167 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  <  M )
63 elfzo2 10244 . . . . . 6  |-  ( m  e.  ( 0..^ M )  <->  ( m  e.  ( ZZ>= `  0 )  /\  M  e.  ZZ  /\  m  <  M ) )
644, 6, 62, 63syl3anbrc 1183 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  e.  ( 0..^ M ) )
65643expia 1207 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) ) )  ->  ( ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )  ->  m  e.  ( 0..^ M ) ) )
661, 65biimtrid 152 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) ) )  ->  ( m  e.  (bits `  N )  ->  m  e.  ( 0..^ M ) ) )
6766ssrdv 3190 . 2  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) ) )  ->  (bits `  N
)  C_  ( 0..^ M ) )
68 simpr 110 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  e.  NN )
6968nnred 9022 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  e.  RR )
70 simpllr 534 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  M  e.  NN0 )
7170nn0red 9322 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  M  e.  RR )
72 maxle2 11396 . . . . . . 7  |-  ( (
-u N  e.  RR  /\  M  e.  RR )  ->  M  <_  sup ( { -u N ,  M } ,  RR ,  <  ) )
7369, 71, 72syl2anc 411 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  M  <_  sup ( { -u N ,  M } ,  RR ,  <  ) )
74 simplr 528 . . . . . . . . 9  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  (bits `  N
)  C_  ( 0..^ M ) )
75 n2dvdsm1 12097 . . . . . . . . . . 11  |-  -.  2  ||  -u 1
76 simplll 533 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  N  e.  ZZ )
7776zred 9467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  N  e.  RR )
7819a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  2  e.  NN )
7968nnnn0d 9321 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  e.  NN0 )
80 nn0maxcl 11409 . . . . . . . . . . . . . . . . 17  |-  ( (
-u N  e.  NN0  /\  M  e.  NN0 )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  e.  NN0 )
8179, 70, 80syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  e.  NN0 )
8278, 81nnexpcld 10806 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
)  e.  NN )
8377, 82nndivred 9059 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  e.  RR )
84 1red 8060 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  1  e.  RR )
8576zcnd 9468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  N  e.  CC )
8682nncnd 9023 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
)  e.  CC )
8782nnap0d 9055 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) #  0 )
8885, 86, 87divnegapd 8849 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  =  ( -u N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) ) )
8981nn0red 9322 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  e.  RR )
9082nnred 9022 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
)  e.  RR )
91 maxle1 11395 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u N  e.  RR  /\  M  e.  RR )  ->  -u N  <_  sup ( { -u N ,  M } ,  RR ,  <  ) )
9269, 71, 91syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  <_  sup ( { -u N ,  M } ,  RR ,  <  ) )
93 2z 9373 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  ZZ
94 uzid 9634 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  ( ZZ>= `  2 )
96 bernneq3 10773 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  sup ( { -u N ,  M } ,  RR ,  <  )  e.  NN0 )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  <  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )
9795, 81, 96sylancr 414 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  <  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )
9889, 90, 97ltled 8164 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  <_  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )
9969, 89, 90, 92, 98letrd 8169 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  <_  (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )
10086mulridd 8062 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( ( 2 ^ sup ( {
-u N ,  M } ,  RR ,  <  ) )  x.  1 )  =  ( 2 ^ sup ( {
-u N ,  M } ,  RR ,  <  ) ) )
10199, 100breqtrrd 4062 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  <_  (
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) )  x.  1 ) )
10282nnrpd 9788 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
)  e.  RR+ )
10369, 84, 102ledivmuld 9844 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( ( -u N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) )  <_  1  <->  -u N  <_  ( (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) )  x.  1 ) ) )
104101, 103mpbird 167 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( -u N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) )  <_  1
)
10588, 104eqbrtrd 4056 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  <_ 
1 )
10683, 84, 105lenegcon1d 8573 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u 1  <_  ( N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) ) )
10768nngt0d 9053 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  0  <  -u N
)
10882nngt0d 9053 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  0  <  (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )
10969, 90, 107, 108divgt0d 8981 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  0  <  ( -u N  /  ( 2 ^ sup ( {
-u N ,  M } ,  RR ,  <  ) ) ) )
110109, 88breqtrrd 4062 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  0  <  -u ( N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) ) )
11183lt0neg1d 8561 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( ( N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) )  <  0  <->  0  <  -u ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) ) ) )
112110, 111mpbird 167 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  <  0 )
113 ax-1cn 7991 . . . . . . . . . . . . . . 15  |-  1  e.  CC
114 neg1cn 9114 . . . . . . . . . . . . . . 15  |-  -u 1  e.  CC
115 1pneg1e0 9120 . . . . . . . . . . . . . . 15  |-  ( 1  +  -u 1 )  =  0
116113, 114, 115addcomli 8190 . . . . . . . . . . . . . 14  |-  ( -u
1  +  1 )  =  0
117112, 116breqtrrdi 4076 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  < 
( -u 1  +  1 ) )
118 znq 9717 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) )  e.  NN )  ->  ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  e.  QQ )
11976, 82, 118syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  e.  QQ )
120 neg1z 9377 . . . . . . . . . . . . . 14  |-  -u 1  e.  ZZ
121 flqbi 10399 . . . . . . . . . . . . . 14  |-  ( ( ( N  /  (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  e.  QQ  /\  -u 1  e.  ZZ )  ->  (
( |_ `  ( N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) ) )  = 
-u 1  <->  ( -u 1  <_  ( N  /  (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  /\  ( N  /  (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  < 
( -u 1  +  1 ) ) ) )
122119, 120, 121sylancl 413 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( ( |_
`  ( N  / 
( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) ) )  =  -u 1  <->  ( -u 1  <_  ( N  /  (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  /\  ( N  /  (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) )  < 
( -u 1  +  1 ) ) ) )
123106, 117, 122mpbir2and 946 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( |_ `  ( N  /  (
2 ^ sup ( { -u N ,  M } ,  RR ,  <  ) ) ) )  =  -u 1 )
124123breq2d 4046 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2  ||  ( |_ `  ( N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) ) )  <->  2  ||  -u 1 ) )
12575, 124mtbiri 676 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) ) ) )
126 bitsval2 12128 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  sup ( { -u N ,  M } ,  RR ,  <  )  e.  NN0 )  ->  ( sup ( { -u N ,  M } ,  RR ,  <  )  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) ) ) ) )
12776, 81, 126syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( sup ( { -u N ,  M } ,  RR ,  <  )  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ sup ( { -u N ,  M } ,  RR ,  <  )
) ) ) ) )
128125, 127mpbird 167 . . . . . . . . 9  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  e.  (bits `  N )
)
12974, 128sseldd 3185 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  e.  ( 0..^ M ) )
130 elfzolt2 10251 . . . . . . . 8  |-  ( sup ( { -u N ,  M } ,  RR ,  <  )  e.  ( 0..^ M )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  <  M
)
131129, 130syl 14 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  <  M )
13281nn0zd 9465 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  sup ( { -u N ,  M } ,  RR ,  <  )  e.  ZZ )
13370nn0zd 9465 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  M  e.  ZZ )
134 zltnle 9391 . . . . . . . 8  |-  ( ( sup ( { -u N ,  M } ,  RR ,  <  )  e.  ZZ  /\  M  e.  ZZ )  ->  ( sup ( { -u N ,  M } ,  RR ,  <  )  <  M  <->  -.  M  <_  sup ( { -u N ,  M } ,  RR ,  <  ) ) )
135132, 133, 134syl2anc 411 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( sup ( { -u N ,  M } ,  RR ,  <  )  <  M  <->  -.  M  <_  sup ( { -u N ,  M } ,  RR ,  <  )
) )
136131, 135mpbid 147 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -.  M  <_  sup ( { -u N ,  M } ,  RR ,  <  ) )
13773, 136pm2.65da 662 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  -.  -u N  e.  NN )
138137intnand 932 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  -.  ( N  e.  RR  /\  -u N  e.  NN ) )
139 simpll 527 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  N  e.  ZZ )
140 elznn0nn 9359 . . . . 5  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
141139, 140sylib 122 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
142138, 141ecased 1360 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  N  e.  NN0 )
143 simplr 528 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  M  e.  NN0 )
144 simpr 110 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  (bits `  N
)  C_  ( 0..^ M ) )
145 eqid 2196 . . 3  |- inf ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )  = inf ( { n  e. 
NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )
146142, 143, 144, 145bitsfzolem 12138 . 2  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  N  e.  ( 0..^ ( 2 ^ M ) ) )
14767, 146impbida 596 1  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  e.  ( 0..^ ( 2 ^ M ) )  <->  (bits `  N
)  C_  ( 0..^ M ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479    C_ wss 3157   {cpr 3624   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   supcsup 7057  infcinf 7058   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    < clt 8080    <_ cle 8081   -ucneg 8217    / cdiv 8718   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   QQcq 9712   RR+crp 9747  ..^cfzo 10236   |_cfl 10377   ^cexp 10649    || cdvds 11971  bitscbits 12124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-bits 12125
This theorem is referenced by:  bitsfi  12141  0bits  12143  bitsinv1  12146
  Copyright terms: Public domain W3C validator