| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofdig | Unicode version | ||
| Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofdi.1 |
|
| caofdi.2 |
|
| caofdi.3 |
|
| caofdi.4 |
|
| caofdig.r |
|
| caofdig.t |
|
| caofdi.5 |
|
| Ref | Expression |
|---|---|
| caofdig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofdi.5 |
. . . . 5
| |
| 2 | 1 | adantlr 477 |
. . . 4
|
| 3 | caofdi.2 |
. . . . 5
| |
| 4 | 3 | ffvelcdmda 5763 |
. . . 4
|
| 5 | caofdi.3 |
. . . . 5
| |
| 6 | 5 | ffvelcdmda 5763 |
. . . 4
|
| 7 | caofdi.4 |
. . . . 5
| |
| 8 | 7 | ffvelcdmda 5763 |
. . . 4
|
| 9 | 2, 4, 6, 8 | caovdid 6172 |
. . 3
|
| 10 | 9 | mpteq2dva 4173 |
. 2
|
| 11 | caofdi.1 |
. . 3
| |
| 12 | oveq2 6002 |
. . . . 5
| |
| 13 | 12 | eleq1d 2298 |
. . . 4
|
| 14 | oveq1 6001 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2298 |
. . . . . 6
|
| 16 | 15 | ralbidv 2530 |
. . . . 5
|
| 17 | caofdig.r |
. . . . . . 7
| |
| 18 | 17 | ralrimivva 2612 |
. . . . . 6
|
| 19 | 18 | adantr 276 |
. . . . 5
|
| 20 | 16, 19, 6 | rspcdva 2912 |
. . . 4
|
| 21 | 13, 20, 8 | rspcdva 2912 |
. . 3
|
| 22 | 3 | feqmptd 5680 |
. . 3
|
| 23 | 5 | feqmptd 5680 |
. . . 4
|
| 24 | 7 | feqmptd 5680 |
. . . 4
|
| 25 | 11, 6, 8, 23, 24 | offval2 6224 |
. . 3
|
| 26 | 11, 4, 21, 22, 25 | offval2 6224 |
. 2
|
| 27 | oveq2 6002 |
. . . . 5
| |
| 28 | 27 | eleq1d 2298 |
. . . 4
|
| 29 | oveq1 6001 |
. . . . . . 7
| |
| 30 | 29 | eleq1d 2298 |
. . . . . 6
|
| 31 | 30 | ralbidv 2530 |
. . . . 5
|
| 32 | caofdig.t |
. . . . . . 7
| |
| 33 | 32 | ralrimivva 2612 |
. . . . . 6
|
| 34 | 33 | adantr 276 |
. . . . 5
|
| 35 | 31, 34, 4 | rspcdva 2912 |
. . . 4
|
| 36 | 28, 35, 6 | rspcdva 2912 |
. . 3
|
| 37 | oveq2 6002 |
. . . . 5
| |
| 38 | 37 | eleq1d 2298 |
. . . 4
|
| 39 | 38, 35, 8 | rspcdva 2912 |
. . 3
|
| 40 | 11, 4, 6, 22, 23 | offval2 6224 |
. . 3
|
| 41 | 11, 4, 8, 22, 24 | offval2 6224 |
. . 3
|
| 42 | 11, 36, 39, 40, 41 | offval2 6224 |
. 2
|
| 43 | 10, 26, 42 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |