| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofdig | Unicode version | ||
| Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofdi.1 |
|
| caofdi.2 |
|
| caofdi.3 |
|
| caofdi.4 |
|
| caofdig.r |
|
| caofdig.t |
|
| caofdi.5 |
|
| Ref | Expression |
|---|---|
| caofdig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofdi.5 |
. . . . 5
| |
| 2 | 1 | adantlr 477 |
. . . 4
|
| 3 | caofdi.2 |
. . . . 5
| |
| 4 | 3 | ffvelcdmda 5722 |
. . . 4
|
| 5 | caofdi.3 |
. . . . 5
| |
| 6 | 5 | ffvelcdmda 5722 |
. . . 4
|
| 7 | caofdi.4 |
. . . . 5
| |
| 8 | 7 | ffvelcdmda 5722 |
. . . 4
|
| 9 | 2, 4, 6, 8 | caovdid 6129 |
. . 3
|
| 10 | 9 | mpteq2dva 4138 |
. 2
|
| 11 | caofdi.1 |
. . 3
| |
| 12 | oveq2 5959 |
. . . . 5
| |
| 13 | 12 | eleq1d 2275 |
. . . 4
|
| 14 | oveq1 5958 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2275 |
. . . . . 6
|
| 16 | 15 | ralbidv 2507 |
. . . . 5
|
| 17 | caofdig.r |
. . . . . . 7
| |
| 18 | 17 | ralrimivva 2589 |
. . . . . 6
|
| 19 | 18 | adantr 276 |
. . . . 5
|
| 20 | 16, 19, 6 | rspcdva 2883 |
. . . 4
|
| 21 | 13, 20, 8 | rspcdva 2883 |
. . 3
|
| 22 | 3 | feqmptd 5639 |
. . 3
|
| 23 | 5 | feqmptd 5639 |
. . . 4
|
| 24 | 7 | feqmptd 5639 |
. . . 4
|
| 25 | 11, 6, 8, 23, 24 | offval2 6181 |
. . 3
|
| 26 | 11, 4, 21, 22, 25 | offval2 6181 |
. 2
|
| 27 | oveq2 5959 |
. . . . 5
| |
| 28 | 27 | eleq1d 2275 |
. . . 4
|
| 29 | oveq1 5958 |
. . . . . . 7
| |
| 30 | 29 | eleq1d 2275 |
. . . . . 6
|
| 31 | 30 | ralbidv 2507 |
. . . . 5
|
| 32 | caofdig.t |
. . . . . . 7
| |
| 33 | 32 | ralrimivva 2589 |
. . . . . 6
|
| 34 | 33 | adantr 276 |
. . . . 5
|
| 35 | 31, 34, 4 | rspcdva 2883 |
. . . 4
|
| 36 | 28, 35, 6 | rspcdva 2883 |
. . 3
|
| 37 | oveq2 5959 |
. . . . 5
| |
| 38 | 37 | eleq1d 2275 |
. . . 4
|
| 39 | 38, 35, 8 | rspcdva 2883 |
. . 3
|
| 40 | 11, 4, 6, 22, 23 | offval2 6181 |
. . 3
|
| 41 | 11, 4, 8, 22, 24 | offval2 6181 |
. . 3
|
| 42 | 11, 36, 39, 40, 41 | offval2 6181 |
. 2
|
| 43 | 10, 26, 42 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |