ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofdig Unicode version

Theorem caofdig 6242
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofdi.1  |-  ( ph  ->  A  e.  V )
caofdi.2  |-  ( ph  ->  F : A --> K )
caofdi.3  |-  ( ph  ->  G : A --> S )
caofdi.4  |-  ( ph  ->  H : A --> S )
caofdig.r  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y )  e.  V )
caofdig.t  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S ) )  -> 
( x T y )  e.  W )
caofdi.5  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x T ( y R z ) )  =  ( ( x T y ) O ( x T z ) ) )
Assertion
Ref Expression
caofdig  |-  ( ph  ->  ( F  oF T ( G  oF R H ) )  =  ( ( F  oF T G )  oF O ( F  oF T H ) ) )
Distinct variable groups:    x, y, z, A    x, F, y, z    x, G, y, z    ph, x, y, z   
x, H, y, z   
x, K, y, z   
x, O, y, z   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, V, y    x, W, y
Allowed substitution hints:    V( z)    W( z)

Proof of Theorem caofdig
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofdi.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x T ( y R z ) )  =  ( ( x T y ) O ( x T z ) ) )
21adantlr 477 . . . 4  |-  ( ( ( ph  /\  w  e.  A )  /\  (
x  e.  K  /\  y  e.  S  /\  z  e.  S )
)  ->  ( x T ( y R z ) )  =  ( ( x T y ) O ( x T z ) ) )
3 caofdi.2 . . . . 5  |-  ( ph  ->  F : A --> K )
43ffvelcdmda 5763 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  K )
5 caofdi.3 . . . . 5  |-  ( ph  ->  G : A --> S )
65ffvelcdmda 5763 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
7 caofdi.4 . . . . 5  |-  ( ph  ->  H : A --> S )
87ffvelcdmda 5763 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( H `  w )  e.  S )
92, 4, 6, 8caovdid 6172 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) T ( ( G `  w ) R ( H `  w ) ) )  =  ( ( ( F `  w ) T ( G `  w ) ) O ( ( F `  w ) T ( H `  w ) ) ) )
109mpteq2dva 4173 . 2  |-  ( ph  ->  ( w  e.  A  |->  ( ( F `  w ) T ( ( G `  w
) R ( H `
 w ) ) ) )  =  ( w  e.  A  |->  ( ( ( F `  w ) T ( G `  w ) ) O ( ( F `  w ) T ( H `  w ) ) ) ) )
11 caofdi.1 . . 3  |-  ( ph  ->  A  e.  V )
12 oveq2 6002 . . . . 5  |-  ( y  =  ( H `  w )  ->  (
( G `  w
) R y )  =  ( ( G `
 w ) R ( H `  w
) ) )
1312eleq1d 2298 . . . 4  |-  ( y  =  ( H `  w )  ->  (
( ( G `  w ) R y )  e.  V  <->  ( ( G `  w ) R ( H `  w ) )  e.  V ) )
14 oveq1 6001 . . . . . . 7  |-  ( x  =  ( G `  w )  ->  (
x R y )  =  ( ( G `
 w ) R y ) )
1514eleq1d 2298 . . . . . 6  |-  ( x  =  ( G `  w )  ->  (
( x R y )  e.  V  <->  ( ( G `  w ) R y )  e.  V ) )
1615ralbidv 2530 . . . . 5  |-  ( x  =  ( G `  w )  ->  ( A. y  e.  S  ( x R y )  e.  V  <->  A. y  e.  S  ( ( G `  w ) R y )  e.  V ) )
17 caofdig.r . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y )  e.  V )
1817ralrimivva 2612 . . . . . 6  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x R y )  e.  V )
1918adantr 276 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  A. y  e.  S  ( x R y )  e.  V )
2016, 19, 6rspcdva 2912 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. y  e.  S  ( ( G `  w ) R y )  e.  V )
2113, 20, 8rspcdva 2912 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( H `
 w ) )  e.  V )
223feqmptd 5680 . . 3  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
235feqmptd 5680 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
247feqmptd 5680 . . . 4  |-  ( ph  ->  H  =  ( w  e.  A  |->  ( H `
 w ) ) )
2511, 6, 8, 23, 24offval2 6224 . . 3  |-  ( ph  ->  ( G  oF R H )  =  ( w  e.  A  |->  ( ( G `  w ) R ( H `  w ) ) ) )
2611, 4, 21, 22, 25offval2 6224 . 2  |-  ( ph  ->  ( F  oF T ( G  oF R H ) )  =  ( w  e.  A  |->  ( ( F `  w ) T ( ( G `
 w ) R ( H `  w
) ) ) ) )
27 oveq2 6002 . . . . 5  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) T y )  =  ( ( F `
 w ) T ( G `  w
) ) )
2827eleq1d 2298 . . . 4  |-  ( y  =  ( G `  w )  ->  (
( ( F `  w ) T y )  e.  W  <->  ( ( F `  w ) T ( G `  w ) )  e.  W ) )
29 oveq1 6001 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
x T y )  =  ( ( F `
 w ) T y ) )
3029eleq1d 2298 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
( x T y )  e.  W  <->  ( ( F `  w ) T y )  e.  W ) )
3130ralbidv 2530 . . . . 5  |-  ( x  =  ( F `  w )  ->  ( A. y  e.  S  ( x T y )  e.  W  <->  A. y  e.  S  ( ( F `  w ) T y )  e.  W ) )
32 caofdig.t . . . . . . 7  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S ) )  -> 
( x T y )  e.  W )
3332ralrimivva 2612 . . . . . 6  |-  ( ph  ->  A. x  e.  K  A. y  e.  S  ( x T y )  e.  W )
3433adantr 276 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  K  A. y  e.  S  ( x T y )  e.  W )
3531, 34, 4rspcdva 2912 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. y  e.  S  ( ( F `  w ) T y )  e.  W )
3628, 35, 6rspcdva 2912 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) T ( G `
 w ) )  e.  W )
37 oveq2 6002 . . . . 5  |-  ( y  =  ( H `  w )  ->  (
( F `  w
) T y )  =  ( ( F `
 w ) T ( H `  w
) ) )
3837eleq1d 2298 . . . 4  |-  ( y  =  ( H `  w )  ->  (
( ( F `  w ) T y )  e.  W  <->  ( ( F `  w ) T ( H `  w ) )  e.  W ) )
3938, 35, 8rspcdva 2912 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) T ( H `
 w ) )  e.  W )
4011, 4, 6, 22, 23offval2 6224 . . 3  |-  ( ph  ->  ( F  oF T G )  =  ( w  e.  A  |->  ( ( F `  w ) T ( G `  w ) ) ) )
4111, 4, 8, 22, 24offval2 6224 . . 3  |-  ( ph  ->  ( F  oF T H )  =  ( w  e.  A  |->  ( ( F `  w ) T ( H `  w ) ) ) )
4211, 36, 39, 40, 41offval2 6224 . 2  |-  ( ph  ->  ( ( F  oF T G )  oF O ( F  oF T H ) )  =  ( w  e.  A  |->  ( ( ( F `
 w ) T ( G `  w
) ) O ( ( F `  w
) T ( H `
 w ) ) ) ) )
4310, 26, 423eqtr4d 2272 1  |-  ( ph  ->  ( F  oF T ( G  oF R H ) )  =  ( ( F  oF T G )  oF O ( F  oF T H ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    |-> cmpt 4144   -->wf 5310   ` cfv 5314  (class class class)co 5994    oFcof 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator