ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofdig GIF version

Theorem caofdig 6258
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofdi.1 (𝜑𝐴𝑉)
caofdi.2 (𝜑𝐹:𝐴𝐾)
caofdi.3 (𝜑𝐺:𝐴𝑆)
caofdi.4 (𝜑𝐻:𝐴𝑆)
caofdig.r ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
caofdig.t ((𝜑 ∧ (𝑥𝐾𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
caofdi.5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
Assertion
Ref Expression
caofdig (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem caofdig
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofdi.5 . . . . 5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
21adantlr 477 . . . 4 (((𝜑𝑤𝐴) ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
3 caofdi.2 . . . . 5 (𝜑𝐹:𝐴𝐾)
43ffvelcdmda 5772 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝐾)
5 caofdi.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
65ffvelcdmda 5772 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
7 caofdi.4 . . . . 5 (𝜑𝐻:𝐴𝑆)
87ffvelcdmda 5772 . . . 4 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
92, 4, 6, 8caovdid 6187 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤))) = (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤))))
109mpteq2dva 4174 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
11 caofdi.1 . . 3 (𝜑𝐴𝑉)
12 oveq2 6015 . . . . 5 (𝑦 = (𝐻𝑤) → ((𝐺𝑤)𝑅𝑦) = ((𝐺𝑤)𝑅(𝐻𝑤)))
1312eleq1d 2298 . . . 4 (𝑦 = (𝐻𝑤) → (((𝐺𝑤)𝑅𝑦) ∈ 𝑉 ↔ ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ 𝑉))
14 oveq1 6014 . . . . . . 7 (𝑥 = (𝐺𝑤) → (𝑥𝑅𝑦) = ((𝐺𝑤)𝑅𝑦))
1514eleq1d 2298 . . . . . 6 (𝑥 = (𝐺𝑤) → ((𝑥𝑅𝑦) ∈ 𝑉 ↔ ((𝐺𝑤)𝑅𝑦) ∈ 𝑉))
1615ralbidv 2530 . . . . 5 (𝑥 = (𝐺𝑤) → (∀𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉 ↔ ∀𝑦𝑆 ((𝐺𝑤)𝑅𝑦) ∈ 𝑉))
17 caofdig.r . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
1817ralrimivva 2612 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉)
1918adantr 276 . . . . 5 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉)
2016, 19, 6rspcdva 2912 . . . 4 ((𝜑𝑤𝐴) → ∀𝑦𝑆 ((𝐺𝑤)𝑅𝑦) ∈ 𝑉)
2113, 20, 8rspcdva 2912 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ 𝑉)
223feqmptd 5689 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
235feqmptd 5689 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
247feqmptd 5689 . . . 4 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
2511, 6, 8, 23, 24offval2 6240 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐻𝑤))))
2611, 4, 21, 22, 25offval2 6240 . 2 (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))))
27 oveq2 6015 . . . . 5 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑇𝑦) = ((𝐹𝑤)𝑇(𝐺𝑤)))
2827eleq1d 2298 . . . 4 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ 𝑊))
29 oveq1 6014 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑇𝑦) = ((𝐹𝑤)𝑇𝑦))
3029eleq1d 2298 . . . . . 6 (𝑥 = (𝐹𝑤) → ((𝑥𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇𝑦) ∈ 𝑊))
3130ralbidv 2530 . . . . 5 (𝑥 = (𝐹𝑤) → (∀𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊 ↔ ∀𝑦𝑆 ((𝐹𝑤)𝑇𝑦) ∈ 𝑊))
32 caofdig.t . . . . . . 7 ((𝜑 ∧ (𝑥𝐾𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
3332ralrimivva 2612 . . . . . 6 (𝜑 → ∀𝑥𝐾𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊)
3433adantr 276 . . . . 5 ((𝜑𝑤𝐴) → ∀𝑥𝐾𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊)
3531, 34, 4rspcdva 2912 . . . 4 ((𝜑𝑤𝐴) → ∀𝑦𝑆 ((𝐹𝑤)𝑇𝑦) ∈ 𝑊)
3628, 35, 6rspcdva 2912 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ 𝑊)
37 oveq2 6015 . . . . 5 (𝑦 = (𝐻𝑤) → ((𝐹𝑤)𝑇𝑦) = ((𝐹𝑤)𝑇(𝐻𝑤)))
3837eleq1d 2298 . . . 4 (𝑦 = (𝐻𝑤) → (((𝐹𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ 𝑊))
3938, 35, 8rspcdva 2912 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ 𝑊)
4011, 4, 6, 22, 23offval2 6240 . . 3 (𝜑 → (𝐹𝑓 𝑇𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐺𝑤))))
4111, 4, 8, 22, 24offval2 6240 . . 3 (𝜑 → (𝐹𝑓 𝑇𝐻) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐻𝑤))))
4211, 36, 39, 40, 41offval2 6240 . 2 (𝜑 → ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
4310, 26, 423eqtr4d 2272 1 (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  cmpt 4145  wf 5314  cfv 5318  (class class class)co 6007  𝑓 cof 6222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator