| Step | Hyp | Ref
| Expression |
| 1 | | caofdi.5 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
| 2 | 1 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
| 3 | | caofdi.2 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐾) |
| 4 | 3 | ffvelcdmda 5697 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐾) |
| 5 | | caofdi.3 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
| 6 | 5 | ffvelcdmda 5697 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
| 7 | | caofdi.4 |
. . . . 5
⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
| 8 | 7 | ffvelcdmda 5697 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
| 9 | 2, 4, 6, 8 | caovdid 6099 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))) = (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
| 10 | 9 | mpteq2dva 4123 |
. 2
⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
| 11 | | caofdi.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 12 | | oveq2 5930 |
. . . . 5
⊢ (𝑦 = (𝐻‘𝑤) → ((𝐺‘𝑤)𝑅𝑦) = ((𝐺‘𝑤)𝑅(𝐻‘𝑤))) |
| 13 | 12 | eleq1d 2265 |
. . . 4
⊢ (𝑦 = (𝐻‘𝑤) → (((𝐺‘𝑤)𝑅𝑦) ∈ 𝑉 ↔ ((𝐺‘𝑤)𝑅(𝐻‘𝑤)) ∈ 𝑉)) |
| 14 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑥 = (𝐺‘𝑤) → (𝑥𝑅𝑦) = ((𝐺‘𝑤)𝑅𝑦)) |
| 15 | 14 | eleq1d 2265 |
. . . . . 6
⊢ (𝑥 = (𝐺‘𝑤) → ((𝑥𝑅𝑦) ∈ 𝑉 ↔ ((𝐺‘𝑤)𝑅𝑦) ∈ 𝑉)) |
| 16 | 15 | ralbidv 2497 |
. . . . 5
⊢ (𝑥 = (𝐺‘𝑤) → (∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦) ∈ 𝑉 ↔ ∀𝑦 ∈ 𝑆 ((𝐺‘𝑤)𝑅𝑦) ∈ 𝑉)) |
| 17 | | caofdig.r |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉) |
| 18 | 17 | ralrimivva 2579 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦) ∈ 𝑉) |
| 19 | 18 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦) ∈ 𝑉) |
| 20 | 16, 19, 6 | rspcdva 2873 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑦 ∈ 𝑆 ((𝐺‘𝑤)𝑅𝑦) ∈ 𝑉) |
| 21 | 13, 20, 8 | rspcdva 2873 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐻‘𝑤)) ∈ 𝑉) |
| 22 | 3 | feqmptd 5614 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
| 23 | 5 | feqmptd 5614 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
| 24 | 7 | feqmptd 5614 |
. . . 4
⊢ (𝜑 → 𝐻 = (𝑤 ∈ 𝐴 ↦ (𝐻‘𝑤))) |
| 25 | 11, 6, 8, 23, 24 | offval2 6151 |
. . 3
⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) |
| 26 | 11, 4, 21, 22, 25 | offval2 6151 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))))) |
| 27 | | oveq2 5930 |
. . . . 5
⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑇𝑦) = ((𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 28 | 27 | eleq1d 2265 |
. . . 4
⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹‘𝑤)𝑇(𝐺‘𝑤)) ∈ 𝑊)) |
| 29 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑇𝑦) = ((𝐹‘𝑤)𝑇𝑦)) |
| 30 | 29 | eleq1d 2265 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑇𝑦) ∈ 𝑊 ↔ ((𝐹‘𝑤)𝑇𝑦) ∈ 𝑊)) |
| 31 | 30 | ralbidv 2497 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑤) → (∀𝑦 ∈ 𝑆 (𝑥𝑇𝑦) ∈ 𝑊 ↔ ∀𝑦 ∈ 𝑆 ((𝐹‘𝑤)𝑇𝑦) ∈ 𝑊)) |
| 32 | | caofdig.t |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊) |
| 33 | 32 | ralrimivva 2579 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑆 (𝑥𝑇𝑦) ∈ 𝑊) |
| 34 | 33 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑆 (𝑥𝑇𝑦) ∈ 𝑊) |
| 35 | 31, 34, 4 | rspcdva 2873 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑦 ∈ 𝑆 ((𝐹‘𝑤)𝑇𝑦) ∈ 𝑊) |
| 36 | 28, 35, 6 | rspcdva 2873 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐺‘𝑤)) ∈ 𝑊) |
| 37 | | oveq2 5930 |
. . . . 5
⊢ (𝑦 = (𝐻‘𝑤) → ((𝐹‘𝑤)𝑇𝑦) = ((𝐹‘𝑤)𝑇(𝐻‘𝑤))) |
| 38 | 37 | eleq1d 2265 |
. . . 4
⊢ (𝑦 = (𝐻‘𝑤) → (((𝐹‘𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹‘𝑤)𝑇(𝐻‘𝑤)) ∈ 𝑊)) |
| 39 | 38, 35, 8 | rspcdva 2873 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐻‘𝑤)) ∈ 𝑊) |
| 40 | 11, 4, 6, 22, 23 | offval2 6151 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 𝑇𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
| 41 | 11, 4, 8, 22, 24 | offval2 6151 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 𝑇𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
| 42 | 11, 36, 39, 40, 41 | offval2 6151 |
. 2
⊢ (𝜑 → ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻)) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
| 43 | 10, 26, 42 | 3eqtr4d 2239 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻))) |