ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofdig GIF version

Theorem caofdig 6199
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofdi.1 (𝜑𝐴𝑉)
caofdi.2 (𝜑𝐹:𝐴𝐾)
caofdi.3 (𝜑𝐺:𝐴𝑆)
caofdi.4 (𝜑𝐻:𝐴𝑆)
caofdig.r ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
caofdig.t ((𝜑 ∧ (𝑥𝐾𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
caofdi.5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
Assertion
Ref Expression
caofdig (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem caofdig
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofdi.5 . . . . 5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
21adantlr 477 . . . 4 (((𝜑𝑤𝐴) ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
3 caofdi.2 . . . . 5 (𝜑𝐹:𝐴𝐾)
43ffvelcdmda 5722 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝐾)
5 caofdi.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
65ffvelcdmda 5722 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
7 caofdi.4 . . . . 5 (𝜑𝐻:𝐴𝑆)
87ffvelcdmda 5722 . . . 4 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
92, 4, 6, 8caovdid 6129 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤))) = (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤))))
109mpteq2dva 4138 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
11 caofdi.1 . . 3 (𝜑𝐴𝑉)
12 oveq2 5959 . . . . 5 (𝑦 = (𝐻𝑤) → ((𝐺𝑤)𝑅𝑦) = ((𝐺𝑤)𝑅(𝐻𝑤)))
1312eleq1d 2275 . . . 4 (𝑦 = (𝐻𝑤) → (((𝐺𝑤)𝑅𝑦) ∈ 𝑉 ↔ ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ 𝑉))
14 oveq1 5958 . . . . . . 7 (𝑥 = (𝐺𝑤) → (𝑥𝑅𝑦) = ((𝐺𝑤)𝑅𝑦))
1514eleq1d 2275 . . . . . 6 (𝑥 = (𝐺𝑤) → ((𝑥𝑅𝑦) ∈ 𝑉 ↔ ((𝐺𝑤)𝑅𝑦) ∈ 𝑉))
1615ralbidv 2507 . . . . 5 (𝑥 = (𝐺𝑤) → (∀𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉 ↔ ∀𝑦𝑆 ((𝐺𝑤)𝑅𝑦) ∈ 𝑉))
17 caofdig.r . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
1817ralrimivva 2589 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉)
1918adantr 276 . . . . 5 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉)
2016, 19, 6rspcdva 2883 . . . 4 ((𝜑𝑤𝐴) → ∀𝑦𝑆 ((𝐺𝑤)𝑅𝑦) ∈ 𝑉)
2113, 20, 8rspcdva 2883 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ 𝑉)
223feqmptd 5639 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
235feqmptd 5639 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
247feqmptd 5639 . . . 4 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
2511, 6, 8, 23, 24offval2 6181 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐻𝑤))))
2611, 4, 21, 22, 25offval2 6181 . 2 (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))))
27 oveq2 5959 . . . . 5 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑇𝑦) = ((𝐹𝑤)𝑇(𝐺𝑤)))
2827eleq1d 2275 . . . 4 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ 𝑊))
29 oveq1 5958 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑇𝑦) = ((𝐹𝑤)𝑇𝑦))
3029eleq1d 2275 . . . . . 6 (𝑥 = (𝐹𝑤) → ((𝑥𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇𝑦) ∈ 𝑊))
3130ralbidv 2507 . . . . 5 (𝑥 = (𝐹𝑤) → (∀𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊 ↔ ∀𝑦𝑆 ((𝐹𝑤)𝑇𝑦) ∈ 𝑊))
32 caofdig.t . . . . . . 7 ((𝜑 ∧ (𝑥𝐾𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
3332ralrimivva 2589 . . . . . 6 (𝜑 → ∀𝑥𝐾𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊)
3433adantr 276 . . . . 5 ((𝜑𝑤𝐴) → ∀𝑥𝐾𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊)
3531, 34, 4rspcdva 2883 . . . 4 ((𝜑𝑤𝐴) → ∀𝑦𝑆 ((𝐹𝑤)𝑇𝑦) ∈ 𝑊)
3628, 35, 6rspcdva 2883 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ 𝑊)
37 oveq2 5959 . . . . 5 (𝑦 = (𝐻𝑤) → ((𝐹𝑤)𝑇𝑦) = ((𝐹𝑤)𝑇(𝐻𝑤)))
3837eleq1d 2275 . . . 4 (𝑦 = (𝐻𝑤) → (((𝐹𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ 𝑊))
3938, 35, 8rspcdva 2883 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ 𝑊)
4011, 4, 6, 22, 23offval2 6181 . . 3 (𝜑 → (𝐹𝑓 𝑇𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐺𝑤))))
4111, 4, 8, 22, 24offval2 6181 . . 3 (𝜑 → (𝐹𝑓 𝑇𝐻) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐻𝑤))))
4211, 36, 39, 40, 41offval2 6181 . 2 (𝜑 → ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
4310, 26, 423eqtr4d 2249 1 (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  cmpt 4109  wf 5272  cfv 5276  (class class class)co 5951  𝑓 cof 6163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator