ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofdig GIF version

Theorem caofdig 6222
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofdi.1 (𝜑𝐴𝑉)
caofdi.2 (𝜑𝐹:𝐴𝐾)
caofdi.3 (𝜑𝐺:𝐴𝑆)
caofdi.4 (𝜑𝐻:𝐴𝑆)
caofdig.r ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
caofdig.t ((𝜑 ∧ (𝑥𝐾𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
caofdi.5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
Assertion
Ref Expression
caofdig (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem caofdig
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofdi.5 . . . . 5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
21adantlr 477 . . . 4 (((𝜑𝑤𝐴) ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
3 caofdi.2 . . . . 5 (𝜑𝐹:𝐴𝐾)
43ffvelcdmda 5743 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝐾)
5 caofdi.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
65ffvelcdmda 5743 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
7 caofdi.4 . . . . 5 (𝜑𝐻:𝐴𝑆)
87ffvelcdmda 5743 . . . 4 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
92, 4, 6, 8caovdid 6152 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤))) = (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤))))
109mpteq2dva 4153 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
11 caofdi.1 . . 3 (𝜑𝐴𝑉)
12 oveq2 5982 . . . . 5 (𝑦 = (𝐻𝑤) → ((𝐺𝑤)𝑅𝑦) = ((𝐺𝑤)𝑅(𝐻𝑤)))
1312eleq1d 2278 . . . 4 (𝑦 = (𝐻𝑤) → (((𝐺𝑤)𝑅𝑦) ∈ 𝑉 ↔ ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ 𝑉))
14 oveq1 5981 . . . . . . 7 (𝑥 = (𝐺𝑤) → (𝑥𝑅𝑦) = ((𝐺𝑤)𝑅𝑦))
1514eleq1d 2278 . . . . . 6 (𝑥 = (𝐺𝑤) → ((𝑥𝑅𝑦) ∈ 𝑉 ↔ ((𝐺𝑤)𝑅𝑦) ∈ 𝑉))
1615ralbidv 2510 . . . . 5 (𝑥 = (𝐺𝑤) → (∀𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉 ↔ ∀𝑦𝑆 ((𝐺𝑤)𝑅𝑦) ∈ 𝑉))
17 caofdig.r . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
1817ralrimivva 2592 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉)
1918adantr 276 . . . . 5 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉)
2016, 19, 6rspcdva 2892 . . . 4 ((𝜑𝑤𝐴) → ∀𝑦𝑆 ((𝐺𝑤)𝑅𝑦) ∈ 𝑉)
2113, 20, 8rspcdva 2892 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ 𝑉)
223feqmptd 5660 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
235feqmptd 5660 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
247feqmptd 5660 . . . 4 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
2511, 6, 8, 23, 24offval2 6204 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐻𝑤))))
2611, 4, 21, 22, 25offval2 6204 . 2 (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))))
27 oveq2 5982 . . . . 5 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑇𝑦) = ((𝐹𝑤)𝑇(𝐺𝑤)))
2827eleq1d 2278 . . . 4 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ 𝑊))
29 oveq1 5981 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑇𝑦) = ((𝐹𝑤)𝑇𝑦))
3029eleq1d 2278 . . . . . 6 (𝑥 = (𝐹𝑤) → ((𝑥𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇𝑦) ∈ 𝑊))
3130ralbidv 2510 . . . . 5 (𝑥 = (𝐹𝑤) → (∀𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊 ↔ ∀𝑦𝑆 ((𝐹𝑤)𝑇𝑦) ∈ 𝑊))
32 caofdig.t . . . . . . 7 ((𝜑 ∧ (𝑥𝐾𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
3332ralrimivva 2592 . . . . . 6 (𝜑 → ∀𝑥𝐾𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊)
3433adantr 276 . . . . 5 ((𝜑𝑤𝐴) → ∀𝑥𝐾𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊)
3531, 34, 4rspcdva 2892 . . . 4 ((𝜑𝑤𝐴) → ∀𝑦𝑆 ((𝐹𝑤)𝑇𝑦) ∈ 𝑊)
3628, 35, 6rspcdva 2892 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ 𝑊)
37 oveq2 5982 . . . . 5 (𝑦 = (𝐻𝑤) → ((𝐹𝑤)𝑇𝑦) = ((𝐹𝑤)𝑇(𝐻𝑤)))
3837eleq1d 2278 . . . 4 (𝑦 = (𝐻𝑤) → (((𝐹𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ 𝑊))
3938, 35, 8rspcdva 2892 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ 𝑊)
4011, 4, 6, 22, 23offval2 6204 . . 3 (𝜑 → (𝐹𝑓 𝑇𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐺𝑤))))
4111, 4, 8, 22, 24offval2 6204 . . 3 (𝜑 → (𝐹𝑓 𝑇𝐻) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐻𝑤))))
4211, 36, 39, 40, 41offval2 6204 . 2 (𝜑 → ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
4310, 26, 423eqtr4d 2252 1 (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wral 2488  cmpt 4124  wf 5290  cfv 5294  (class class class)co 5974  𝑓 cof 6186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator