ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofdig GIF version

Theorem caofdig 6164
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofdi.1 (𝜑𝐴𝑉)
caofdi.2 (𝜑𝐹:𝐴𝐾)
caofdi.3 (𝜑𝐺:𝐴𝑆)
caofdi.4 (𝜑𝐻:𝐴𝑆)
caofdig.r ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
caofdig.t ((𝜑 ∧ (𝑥𝐾𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
caofdi.5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
Assertion
Ref Expression
caofdig (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem caofdig
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofdi.5 . . . . 5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
21adantlr 477 . . . 4 (((𝜑𝑤𝐴) ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
3 caofdi.2 . . . . 5 (𝜑𝐹:𝐴𝐾)
43ffvelcdmda 5697 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝐾)
5 caofdi.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
65ffvelcdmda 5697 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
7 caofdi.4 . . . . 5 (𝜑𝐻:𝐴𝑆)
87ffvelcdmda 5697 . . . 4 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
92, 4, 6, 8caovdid 6099 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤))) = (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤))))
109mpteq2dva 4123 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
11 caofdi.1 . . 3 (𝜑𝐴𝑉)
12 oveq2 5930 . . . . 5 (𝑦 = (𝐻𝑤) → ((𝐺𝑤)𝑅𝑦) = ((𝐺𝑤)𝑅(𝐻𝑤)))
1312eleq1d 2265 . . . 4 (𝑦 = (𝐻𝑤) → (((𝐺𝑤)𝑅𝑦) ∈ 𝑉 ↔ ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ 𝑉))
14 oveq1 5929 . . . . . . 7 (𝑥 = (𝐺𝑤) → (𝑥𝑅𝑦) = ((𝐺𝑤)𝑅𝑦))
1514eleq1d 2265 . . . . . 6 (𝑥 = (𝐺𝑤) → ((𝑥𝑅𝑦) ∈ 𝑉 ↔ ((𝐺𝑤)𝑅𝑦) ∈ 𝑉))
1615ralbidv 2497 . . . . 5 (𝑥 = (𝐺𝑤) → (∀𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉 ↔ ∀𝑦𝑆 ((𝐺𝑤)𝑅𝑦) ∈ 𝑉))
17 caofdig.r . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
1817ralrimivva 2579 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉)
1918adantr 276 . . . . 5 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦) ∈ 𝑉)
2016, 19, 6rspcdva 2873 . . . 4 ((𝜑𝑤𝐴) → ∀𝑦𝑆 ((𝐺𝑤)𝑅𝑦) ∈ 𝑉)
2113, 20, 8rspcdva 2873 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ 𝑉)
223feqmptd 5614 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
235feqmptd 5614 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
247feqmptd 5614 . . . 4 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
2511, 6, 8, 23, 24offval2 6151 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐻𝑤))))
2611, 4, 21, 22, 25offval2 6151 . 2 (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))))
27 oveq2 5930 . . . . 5 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑇𝑦) = ((𝐹𝑤)𝑇(𝐺𝑤)))
2827eleq1d 2265 . . . 4 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ 𝑊))
29 oveq1 5929 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑇𝑦) = ((𝐹𝑤)𝑇𝑦))
3029eleq1d 2265 . . . . . 6 (𝑥 = (𝐹𝑤) → ((𝑥𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇𝑦) ∈ 𝑊))
3130ralbidv 2497 . . . . 5 (𝑥 = (𝐹𝑤) → (∀𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊 ↔ ∀𝑦𝑆 ((𝐹𝑤)𝑇𝑦) ∈ 𝑊))
32 caofdig.t . . . . . . 7 ((𝜑 ∧ (𝑥𝐾𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
3332ralrimivva 2579 . . . . . 6 (𝜑 → ∀𝑥𝐾𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊)
3433adantr 276 . . . . 5 ((𝜑𝑤𝐴) → ∀𝑥𝐾𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑊)
3531, 34, 4rspcdva 2873 . . . 4 ((𝜑𝑤𝐴) → ∀𝑦𝑆 ((𝐹𝑤)𝑇𝑦) ∈ 𝑊)
3628, 35, 6rspcdva 2873 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ 𝑊)
37 oveq2 5930 . . . . 5 (𝑦 = (𝐻𝑤) → ((𝐹𝑤)𝑇𝑦) = ((𝐹𝑤)𝑇(𝐻𝑤)))
3837eleq1d 2265 . . . 4 (𝑦 = (𝐻𝑤) → (((𝐹𝑤)𝑇𝑦) ∈ 𝑊 ↔ ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ 𝑊))
3938, 35, 8rspcdva 2873 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ 𝑊)
4011, 4, 6, 22, 23offval2 6151 . . 3 (𝜑 → (𝐹𝑓 𝑇𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐺𝑤))))
4111, 4, 8, 22, 24offval2 6151 . . 3 (𝜑 → (𝐹𝑓 𝑇𝐻) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐻𝑤))))
4211, 36, 39, 40, 41offval2 6151 . 2 (𝜑 → ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
4310, 26, 423eqtr4d 2239 1 (𝜑 → (𝐹𝑓 𝑇(𝐺𝑓 𝑅𝐻)) = ((𝐹𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹𝑓 𝑇𝐻)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  cmpt 4094  wf 5254  cfv 5258  (class class class)co 5922  𝑓 cof 6133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator