| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofid2 | GIF version | ||
| Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| caofid1.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| caofid2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) |
| Ref | Expression |
|---|---|
| caofid2 | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹) = (𝐴 × {𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | fnconstg 5499 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
| 5 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 6 | 5 | ffnd 5450 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 7 | caofid1.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 8 | fnconstg 5499 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (𝐴 × {𝐶}) Fn 𝐴) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
| 10 | fvconst2g 5826 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
| 11 | 2, 10 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
| 12 | eqidd 2210 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
| 13 | caofid2.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) | |
| 14 | 13 | ralrimiva 2583 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝐶) |
| 15 | 5 | ffvelcdmda 5743 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 16 | oveq2 5982 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝐵𝑅𝑥) = (𝐵𝑅(𝐹‘𝑤))) | |
| 17 | 16 | eqeq1d 2218 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝐵𝑅𝑥) = 𝐶 ↔ (𝐵𝑅(𝐹‘𝑤)) = 𝐶)) |
| 18 | 17 | rspccva 2886 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝐶 ∧ (𝐹‘𝑤) ∈ 𝑆) → (𝐵𝑅(𝐹‘𝑤)) = 𝐶) |
| 19 | 14, 15, 18 | syl2an2r 597 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = 𝐶) |
| 20 | fvconst2g 5826 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) | |
| 21 | 7, 20 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) |
| 22 | 19, 21 | eqtr4d 2245 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = ((𝐴 × {𝐶})‘𝑤)) |
| 23 | 1, 4, 6, 9, 11, 12, 22 | offveq 6209 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹) = (𝐴 × {𝐶})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ∀wral 2488 {csn 3646 × cxp 4694 Fn wfn 5289 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ∘𝑓 cof 6186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |