| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofid2 | GIF version | ||
| Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| caofid1.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| caofid2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) |
| Ref | Expression |
|---|---|
| caofid2 | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹) = (𝐴 × {𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | fnconstg 5458 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
| 5 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 6 | 5 | ffnd 5411 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 7 | caofid1.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 8 | fnconstg 5458 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (𝐴 × {𝐶}) Fn 𝐴) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
| 10 | fvconst2g 5779 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
| 11 | 2, 10 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
| 12 | eqidd 2197 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
| 13 | caofid2.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) | |
| 14 | 13 | ralrimiva 2570 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝐶) |
| 15 | 5 | ffvelcdmda 5700 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 16 | oveq2 5933 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝐵𝑅𝑥) = (𝐵𝑅(𝐹‘𝑤))) | |
| 17 | 16 | eqeq1d 2205 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝐵𝑅𝑥) = 𝐶 ↔ (𝐵𝑅(𝐹‘𝑤)) = 𝐶)) |
| 18 | 17 | rspccva 2867 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝐶 ∧ (𝐹‘𝑤) ∈ 𝑆) → (𝐵𝑅(𝐹‘𝑤)) = 𝐶) |
| 19 | 14, 15, 18 | syl2an2r 595 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = 𝐶) |
| 20 | fvconst2g 5779 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) | |
| 21 | 7, 20 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) |
| 22 | 19, 21 | eqtr4d 2232 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = ((𝐴 × {𝐶})‘𝑤)) |
| 23 | 1, 4, 6, 9, 11, 12, 22 | offveq 6160 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹) = (𝐴 × {𝐶})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {csn 3623 × cxp 4662 Fn wfn 5254 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 ∘𝑓 cof 6137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |