ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr Unicode version

Theorem addextpr 7583
Description: Strong extensionality of addition (ordering version). This is similar to addext 8529 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )

Proof of Theorem addextpr
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7499 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21adantr 274 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  e.  P. )
3 addclpr 7499 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( C  +P.  D
)  e.  P. )
43adantl 275 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  D )  e.  P. )
5 simprl 526 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  C  e.  P. )
6 simplr 525 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  B  e.  P. )
7 addclpr 7499 . . . 4  |-  ( ( C  e.  P.  /\  B  e.  P. )  ->  ( C  +P.  B
)  e.  P. )
85, 6, 7syl2anc 409 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  e.  P. )
9 ltsopr 7558 . . . 4  |-  <P  Or  P.
10 sowlin 4305 . . . 4  |-  ( ( 
<P  Or  P.  /\  (
( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. ) )  -> 
( ( A  +P.  B )  <P  ( C  +P.  D )  ->  (
( A  +P.  B
)  <P  ( C  +P.  B )  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
119, 10mpan 422 . . 3  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. )  ->  (
( A  +P.  B
)  <P  ( C  +P.  D )  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
122, 4, 8, 11syl3anc 1233 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
13 simpll 524 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  A  e.  P. )
14 ltaprg 7581 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
1513, 5, 6, 14syl3anc 1233 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
16 addcomprg 7540 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1716adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
1817, 13, 6caovcomd 6009 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  =  ( B  +P.  A ) )
1917, 5, 6caovcomd 6009 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  =  ( B  +P.  C ) )
2018, 19breq12d 4002 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
2115, 20bitr4d 190 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( A  +P.  B )  <P  ( C  +P.  B ) ) )
22 simprr 527 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  D  e.  P. )
23 ltaprg 7581 . . . 4  |-  ( ( B  e.  P.  /\  D  e.  P.  /\  C  e.  P. )  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
246, 22, 5, 23syl3anc 1233 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
2521, 24orbi12d 788 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  <P  C  \/  B  <P  D )  <->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
2612, 25sylibrd 168 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989    Or wor 4280  (class class class)co 5853   P.cnp 7253    +P. cpp 7255    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432
This theorem is referenced by:  mulextsr1lem  7742
  Copyright terms: Public domain W3C validator