ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr Unicode version

Theorem addextpr 7681
Description: Strong extensionality of addition (ordering version). This is similar to addext 8629 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )

Proof of Theorem addextpr
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7597 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21adantr 276 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  e.  P. )
3 addclpr 7597 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( C  +P.  D
)  e.  P. )
43adantl 277 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  D )  e.  P. )
5 simprl 529 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  C  e.  P. )
6 simplr 528 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  B  e.  P. )
7 addclpr 7597 . . . 4  |-  ( ( C  e.  P.  /\  B  e.  P. )  ->  ( C  +P.  B
)  e.  P. )
85, 6, 7syl2anc 411 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  e.  P. )
9 ltsopr 7656 . . . 4  |-  <P  Or  P.
10 sowlin 4351 . . . 4  |-  ( ( 
<P  Or  P.  /\  (
( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. ) )  -> 
( ( A  +P.  B )  <P  ( C  +P.  D )  ->  (
( A  +P.  B
)  <P  ( C  +P.  B )  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
119, 10mpan 424 . . 3  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. )  ->  (
( A  +P.  B
)  <P  ( C  +P.  D )  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
122, 4, 8, 11syl3anc 1249 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
13 simpll 527 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  A  e.  P. )
14 ltaprg 7679 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
1513, 5, 6, 14syl3anc 1249 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
16 addcomprg 7638 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1716adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
1817, 13, 6caovcomd 6075 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  =  ( B  +P.  A ) )
1917, 5, 6caovcomd 6075 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  =  ( B  +P.  C ) )
2018, 19breq12d 4042 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
2115, 20bitr4d 191 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( A  +P.  B )  <P  ( C  +P.  B ) ) )
22 simprr 531 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  D  e.  P. )
23 ltaprg 7679 . . . 4  |-  ( ( B  e.  P.  /\  D  e.  P.  /\  C  e.  P. )  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
246, 22, 5, 23syl3anc 1249 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
2521, 24orbi12d 794 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  <P  C  \/  B  <P  D )  <->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
2612, 25sylibrd 169 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029    Or wor 4326  (class class class)co 5918   P.cnp 7351    +P. cpp 7353    <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  mulextsr1lem  7840
  Copyright terms: Public domain W3C validator