ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr Unicode version

Theorem addextpr 7553
Description: Strong extensionality of addition (ordering version). This is similar to addext 8499 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )

Proof of Theorem addextpr
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7469 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21adantr 274 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  e.  P. )
3 addclpr 7469 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( C  +P.  D
)  e.  P. )
43adantl 275 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  D )  e.  P. )
5 simprl 521 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  C  e.  P. )
6 simplr 520 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  B  e.  P. )
7 addclpr 7469 . . . 4  |-  ( ( C  e.  P.  /\  B  e.  P. )  ->  ( C  +P.  B
)  e.  P. )
85, 6, 7syl2anc 409 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  e.  P. )
9 ltsopr 7528 . . . 4  |-  <P  Or  P.
10 sowlin 4292 . . . 4  |-  ( ( 
<P  Or  P.  /\  (
( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. ) )  -> 
( ( A  +P.  B )  <P  ( C  +P.  D )  ->  (
( A  +P.  B
)  <P  ( C  +P.  B )  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
119, 10mpan 421 . . 3  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. )  ->  (
( A  +P.  B
)  <P  ( C  +P.  D )  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
122, 4, 8, 11syl3anc 1227 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
13 simpll 519 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  A  e.  P. )
14 ltaprg 7551 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
1513, 5, 6, 14syl3anc 1227 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
16 addcomprg 7510 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1716adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
1817, 13, 6caovcomd 5989 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  =  ( B  +P.  A ) )
1917, 5, 6caovcomd 5989 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  =  ( B  +P.  C ) )
2018, 19breq12d 3989 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
2115, 20bitr4d 190 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( A  +P.  B )  <P  ( C  +P.  B ) ) )
22 simprr 522 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  D  e.  P. )
23 ltaprg 7551 . . . 4  |-  ( ( B  e.  P.  /\  D  e.  P.  /\  C  e.  P. )  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
246, 22, 5, 23syl3anc 1227 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
2521, 24orbi12d 783 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  <P  C  \/  B  <P  D )  <->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
2612, 25sylibrd 168 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 967    = wceq 1342    e. wcel 2135   class class class wbr 3976    Or wor 4267  (class class class)co 5836   P.cnp 7223    +P. cpp 7225    <P cltp 7227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-iplp 7400  df-iltp 7402
This theorem is referenced by:  mulextsr1lem  7712
  Copyright terms: Public domain W3C validator