ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr Unicode version

Theorem addextpr 7733
Description: Strong extensionality of addition (ordering version). This is similar to addext 8682 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )

Proof of Theorem addextpr
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7649 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21adantr 276 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  e.  P. )
3 addclpr 7649 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( C  +P.  D
)  e.  P. )
43adantl 277 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  D )  e.  P. )
5 simprl 529 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  C  e.  P. )
6 simplr 528 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  B  e.  P. )
7 addclpr 7649 . . . 4  |-  ( ( C  e.  P.  /\  B  e.  P. )  ->  ( C  +P.  B
)  e.  P. )
85, 6, 7syl2anc 411 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  e.  P. )
9 ltsopr 7708 . . . 4  |-  <P  Or  P.
10 sowlin 4366 . . . 4  |-  ( ( 
<P  Or  P.  /\  (
( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. ) )  -> 
( ( A  +P.  B )  <P  ( C  +P.  D )  ->  (
( A  +P.  B
)  <P  ( C  +P.  B )  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
119, 10mpan 424 . . 3  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. )  ->  (
( A  +P.  B
)  <P  ( C  +P.  D )  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
122, 4, 8, 11syl3anc 1249 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
13 simpll 527 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  A  e.  P. )
14 ltaprg 7731 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
1513, 5, 6, 14syl3anc 1249 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
16 addcomprg 7690 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1716adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
1817, 13, 6caovcomd 6102 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  =  ( B  +P.  A ) )
1917, 5, 6caovcomd 6102 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  =  ( B  +P.  C ) )
2018, 19breq12d 4056 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
2115, 20bitr4d 191 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( A  +P.  B )  <P  ( C  +P.  B ) ) )
22 simprr 531 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  D  e.  P. )
23 ltaprg 7731 . . . 4  |-  ( ( B  e.  P.  /\  D  e.  P.  /\  C  e.  P. )  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
246, 22, 5, 23syl3anc 1249 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
2521, 24orbi12d 794 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  <P  C  \/  B  <P  D )  <->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
2612, 25sylibrd 169 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043    Or wor 4341  (class class class)co 5943   P.cnp 7403    +P. cpp 7405    <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-iplp 7580  df-iltp 7582
This theorem is referenced by:  mulextsr1lem  7892
  Copyright terms: Public domain W3C validator