ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr Unicode version

Theorem addextpr 7595
Description: Strong extensionality of addition (ordering version). This is similar to addext 8541 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )

Proof of Theorem addextpr
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7511 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21adantr 276 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  e.  P. )
3 addclpr 7511 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( C  +P.  D
)  e.  P. )
43adantl 277 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  D )  e.  P. )
5 simprl 529 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  C  e.  P. )
6 simplr 528 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  B  e.  P. )
7 addclpr 7511 . . . 4  |-  ( ( C  e.  P.  /\  B  e.  P. )  ->  ( C  +P.  B
)  e.  P. )
85, 6, 7syl2anc 411 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  e.  P. )
9 ltsopr 7570 . . . 4  |-  <P  Or  P.
10 sowlin 4314 . . . 4  |-  ( ( 
<P  Or  P.  /\  (
( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. ) )  -> 
( ( A  +P.  B )  <P  ( C  +P.  D )  ->  (
( A  +P.  B
)  <P  ( C  +P.  B )  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
119, 10mpan 424 . . 3  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( C  +P.  D )  e.  P.  /\  ( C  +P.  B )  e. 
P. )  ->  (
( A  +P.  B
)  <P  ( C  +P.  D )  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
122, 4, 8, 11syl3anc 1238 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
13 simpll 527 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  A  e.  P. )
14 ltaprg 7593 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
1513, 5, 6, 14syl3anc 1238 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
16 addcomprg 7552 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1716adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
1817, 13, 6caovcomd 6021 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  +P.  B )  =  ( B  +P.  A ) )
1917, 5, 6caovcomd 6021 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( C  +P.  B )  =  ( B  +P.  C ) )
2018, 19breq12d 4011 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  <->  ( B  +P.  A )  <P  ( B  +P.  C ) ) )
2115, 20bitr4d 191 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( A  <P  C  <->  ( A  +P.  B )  <P  ( C  +P.  B ) ) )
22 simprr 531 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  D  e.  P. )
23 ltaprg 7593 . . . 4  |-  ( ( B  e.  P.  /\  D  e.  P.  /\  C  e.  P. )  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
246, 22, 5, 23syl3anc 1238 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( B  <P  D  <->  ( C  +P.  B )  <P  ( C  +P.  D ) ) )
2521, 24orbi12d 793 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  <P  C  \/  B  <P  D )  <->  ( ( A  +P.  B )  <P 
( C  +P.  B
)  \/  ( C  +P.  B )  <P 
( C  +P.  D
) ) ) )
2612, 25sylibrd 169 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( ( A  +P.  B )  <P 
( C  +P.  D
)  ->  ( A  <P  C  \/  B  <P  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2146   class class class wbr 3998    Or wor 4289  (class class class)co 5865   P.cnp 7265    +P. cpp 7267    <P cltp 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-2o 6408  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-enq0 7398  df-nq0 7399  df-0nq0 7400  df-plq0 7401  df-mq0 7402  df-inp 7440  df-iplp 7442  df-iltp 7444
This theorem is referenced by:  mulextsr1lem  7754
  Copyright terms: Public domain W3C validator