ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvprodi GIF version

Theorem cbvprodi 11703
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
cbvprodi.1 𝑘𝐵
cbvprodi.2 𝑗𝐶
cbvprodi.3 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvprodi 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘,𝐴
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvprodi
StepHypRef Expression
1 cbvprodi.3 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2336 . 2 𝑘𝐴
3 nfcv 2336 . 2 𝑗𝐴
4 cbvprodi.1 . 2 𝑘𝐵
5 cbvprodi.2 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvprod 11701 1 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnfc 2323  cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-seqfrec 10519  df-proddc 11694
This theorem is referenced by:  prodfct  11730  prodsnf  11735  fprodm1s  11744  fprodp1s  11745  prodsns  11746  fprodcllemf  11756  fprod2dlemstep  11765  fprodcom2fi  11769  fproddivapf  11774  fprodsplitf  11775
  Copyright terms: Public domain W3C validator