| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvprodi | GIF version | ||
| Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| cbvprodi.1 | ⊢ Ⅎ𝑘𝐵 |
| cbvprodi.2 | ⊢ Ⅎ𝑗𝐶 |
| cbvprodi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvprodi | ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvprodi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2347 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2347 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | cbvprodi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | cbvprodi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvprod 11788 | 1 ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 Ⅎwnfc 2334 ∏cprod 11780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-cnv 4681 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-recs 6381 df-frec 6467 df-seqfrec 10574 df-proddc 11781 |
| This theorem is referenced by: prodfct 11817 prodsnf 11822 fprodm1s 11831 fprodp1s 11832 prodsns 11833 fprodcllemf 11843 fprod2dlemstep 11852 fprodcom2fi 11856 fproddivapf 11861 fprodsplitf 11862 |
| Copyright terms: Public domain | W3C validator |