ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvprodi GIF version

Theorem cbvprodi 12066
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
cbvprodi.1 𝑘𝐵
cbvprodi.2 𝑗𝐶
cbvprodi.3 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvprodi 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘,𝐴
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvprodi
StepHypRef Expression
1 cbvprodi.3 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2372 . 2 𝑘𝐴
3 nfcv 2372 . 2 𝑗𝐴
4 cbvprodi.1 . 2 𝑘𝐵
5 cbvprodi.2 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvprod 12064 1 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wnfc 2359  cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-seqfrec 10665  df-proddc 12057
This theorem is referenced by:  prodfct  12093  prodsnf  12098  fprodm1s  12107  fprodp1s  12108  prodsns  12109  fprodcllemf  12119  fprod2dlemstep  12128  fprodcom2fi  12132  fproddivapf  12137  fprodsplitf  12138
  Copyright terms: Public domain W3C validator