ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf2 Unicode version

Theorem elcncf2 12730
Description: Version of elcncf 12729 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
elcncf2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf2
StepHypRef Expression
1 elcncf 12729 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
2 simplll 522 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  A  C_  CC )
3 simprl 520 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  A )
42, 3sseldd 3098 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  CC )
5 simprr 521 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  A )
62, 5sseldd 3098 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  CC )
74, 6abssubd 10965 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( abs `  ( x  -  w
) )  =  ( abs `  ( w  -  x ) ) )
87breq1d 3939 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( ( abs `  ( x  -  w ) )  < 
z  <->  ( abs `  (
w  -  x ) )  <  z ) )
9 simpllr 523 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  B  C_  CC )
10 simplr 519 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  F : A
--> B )
1110, 3ffvelrnd 5556 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  x )  e.  B
)
129, 11sseldd 3098 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  x )  e.  CC )
1310, 5ffvelrnd 5556 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  w )  e.  B
)
149, 13sseldd 3098 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  w )  e.  CC )
1512, 14abssubd 10965 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
1615breq1d 3939 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( ( abs `  ( ( F `
 x )  -  ( F `  w ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  x ) ) )  <  y ) )
178, 16imbi12d 233 . . . . . . . 8  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
1817anassrs 397 . . . . . . 7  |-  ( ( ( ( ( A 
C_  CC  /\  B  C_  CC )  /\  F : A
--> B )  /\  x  e.  A )  /\  w  e.  A )  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
1918ralbidva 2433 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2019rexbidv 2438 . . . . 5  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2120ralbidv 2437 . . . 4  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2221ralbidva 2433 . . 3  |-  ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2322pm5.32da 447 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
241, 23bitrd 187 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   CCcc 7618    < clt 7800    - cmin 7933   RR+crp 9441   abscabs 10769   -cn->ccncf 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-2 8779  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-cncf 12727
This theorem is referenced by:  cncfi  12734  cncffvrn  12738  abscncf  12741  recncf  12742  imcncf  12743  cjcncf  12744  mulc1cncf  12745  cncfco  12747  cdivcncfap  12756  mulcncf  12760
  Copyright terms: Public domain W3C validator