ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf2 Unicode version

Theorem elcncf2 13728
Description: Version of elcncf 13727 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
elcncf2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf2
StepHypRef Expression
1 elcncf 13727 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
2 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  A  C_  CC )
3 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  A )
42, 3sseldd 3156 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  CC )
5 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  A )
62, 5sseldd 3156 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  CC )
74, 6abssubd 11186 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( abs `  ( x  -  w
) )  =  ( abs `  ( w  -  x ) ) )
87breq1d 4010 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( ( abs `  ( x  -  w ) )  < 
z  <->  ( abs `  (
w  -  x ) )  <  z ) )
9 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  B  C_  CC )
10 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  F : A
--> B )
1110, 3ffvelcdmd 5648 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  x )  e.  B
)
129, 11sseldd 3156 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  x )  e.  CC )
1310, 5ffvelcdmd 5648 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  w )  e.  B
)
149, 13sseldd 3156 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  w )  e.  CC )
1512, 14abssubd 11186 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
1615breq1d 4010 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( ( abs `  ( ( F `
 x )  -  ( F `  w ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  x ) ) )  <  y ) )
178, 16imbi12d 234 . . . . . . . 8  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
1817anassrs 400 . . . . . . 7  |-  ( ( ( ( ( A 
C_  CC  /\  B  C_  CC )  /\  F : A
--> B )  /\  x  e.  A )  /\  w  e.  A )  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
1918ralbidva 2473 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2019rexbidv 2478 . . . . 5  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2120ralbidv 2477 . . . 4  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2221ralbidva 2473 . . 3  |-  ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2322pm5.32da 452 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
241, 23bitrd 188 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   class class class wbr 4000   -->wf 5208   ` cfv 5212  (class class class)co 5869   CCcc 7800    < clt 7982    - cmin 8118   RR+crp 9640   abscabs 10990   -cn->ccncf 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-map 6644  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-2 8967  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-cncf 13725
This theorem is referenced by:  cncfi  13732  cncfcdm  13736  abscncf  13739  recncf  13740  imcncf  13741  cjcncf  13742  mulc1cncf  13743  cncfco  13745  cdivcncfap  13754  mulcncf  13758
  Copyright terms: Public domain W3C validator