ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf2 Unicode version

Theorem elcncf2 13355
Description: Version of elcncf 13354 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
elcncf2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf2
StepHypRef Expression
1 elcncf 13354 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
2 simplll 528 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  A  C_  CC )
3 simprl 526 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  A )
42, 3sseldd 3148 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  CC )
5 simprr 527 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  A )
62, 5sseldd 3148 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  CC )
74, 6abssubd 11157 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( abs `  ( x  -  w
) )  =  ( abs `  ( w  -  x ) ) )
87breq1d 3999 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( ( abs `  ( x  -  w ) )  < 
z  <->  ( abs `  (
w  -  x ) )  <  z ) )
9 simpllr 529 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  B  C_  CC )
10 simplr 525 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  F : A
--> B )
1110, 3ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  x )  e.  B
)
129, 11sseldd 3148 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  x )  e.  CC )
1310, 5ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  w )  e.  B
)
149, 13sseldd 3148 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  w )  e.  CC )
1512, 14abssubd 11157 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
1615breq1d 3999 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( ( abs `  ( ( F `
 x )  -  ( F `  w ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  x ) ) )  <  y ) )
178, 16imbi12d 233 . . . . . . . 8  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
1817anassrs 398 . . . . . . 7  |-  ( ( ( ( ( A 
C_  CC  /\  B  C_  CC )  /\  F : A
--> B )  /\  x  e.  A )  /\  w  e.  A )  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
1918ralbidva 2466 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2019rexbidv 2471 . . . . 5  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2120ralbidv 2470 . . . 4  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2221ralbidva 2466 . . 3  |-  ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2322pm5.32da 449 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
241, 23bitrd 187 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   CCcc 7772    < clt 7954    - cmin 8090   RR+crp 9610   abscabs 10961   -cn->ccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-2 8937  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-cncf 13352
This theorem is referenced by:  cncfi  13359  cncffvrn  13363  abscncf  13366  recncf  13367  imcncf  13368  cjcncf  13369  mulc1cncf  13370  cncfco  13372  cdivcncfap  13381  mulcncf  13385
  Copyright terms: Public domain W3C validator