Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elcncf2 | Unicode version |
Description: Version of elcncf 13319 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
elcncf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcncf 13319 | . 2 | |
2 | simplll 528 | . . . . . . . . . . . 12 | |
3 | simprl 526 | . . . . . . . . . . . 12 | |
4 | 2, 3 | sseldd 3148 | . . . . . . . . . . 11 |
5 | simprr 527 | . . . . . . . . . . . 12 | |
6 | 2, 5 | sseldd 3148 | . . . . . . . . . . 11 |
7 | 4, 6 | abssubd 11150 | . . . . . . . . . 10 |
8 | 7 | breq1d 3997 | . . . . . . . . 9 |
9 | simpllr 529 | . . . . . . . . . . . 12 | |
10 | simplr 525 | . . . . . . . . . . . . 13 | |
11 | 10, 3 | ffvelrnd 5630 | . . . . . . . . . . . 12 |
12 | 9, 11 | sseldd 3148 | . . . . . . . . . . 11 |
13 | 10, 5 | ffvelrnd 5630 | . . . . . . . . . . . 12 |
14 | 9, 13 | sseldd 3148 | . . . . . . . . . . 11 |
15 | 12, 14 | abssubd 11150 | . . . . . . . . . 10 |
16 | 15 | breq1d 3997 | . . . . . . . . 9 |
17 | 8, 16 | imbi12d 233 | . . . . . . . 8 |
18 | 17 | anassrs 398 | . . . . . . 7 |
19 | 18 | ralbidva 2466 | . . . . . 6 |
20 | 19 | rexbidv 2471 | . . . . 5 |
21 | 20 | ralbidv 2470 | . . . 4 |
22 | 21 | ralbidva 2466 | . . 3 |
23 | 22 | pm5.32da 449 | . 2 |
24 | 1, 23 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 wral 2448 wrex 2449 wss 3121 class class class wbr 3987 wf 5192 cfv 5196 (class class class)co 5851 cc 7765 clt 7947 cmin 8083 crp 9603 cabs 10954 ccncf 13316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-map 6626 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-2 8930 df-cj 10799 df-re 10800 df-im 10801 df-rsqrt 10955 df-abs 10956 df-cncf 13317 |
This theorem is referenced by: cncfi 13324 cncffvrn 13328 abscncf 13331 recncf 13332 imcncf 13333 cjcncf 13334 mulc1cncf 13335 cncfco 13337 cdivcncfap 13346 mulcncf 13350 |
Copyright terms: Public domain | W3C validator |