ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnconst Unicode version

Theorem cnconst 14902
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( B  e.  Y  /\  F : X
--> { B } ) )  ->  F  e.  ( J  Cn  K
) )

Proof of Theorem cnconst
StepHypRef Expression
1 fconst2g 5853 . . . 4  |-  ( B  e.  Y  ->  ( F : X --> { B } 
<->  F  =  ( X  X.  { B }
) ) )
21adantl 277 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  B  e.  Y )  ->  ( F : X --> { B } 
<->  F  =  ( X  X.  { B }
) ) )
3 cnconst2 14901 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )
433expa 1227 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  B  e.  Y )  ->  ( X  X.  { B }
)  e.  ( J  Cn  K ) )
5 eleq1 2292 . . . 4  |-  ( F  =  ( X  X.  { B } )  -> 
( F  e.  ( J  Cn  K )  <-> 
( X  X.  { B } )  e.  ( J  Cn  K ) ) )
64, 5syl5ibrcom 157 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  B  e.  Y )  ->  ( F  =  ( X  X.  { B } )  ->  F  e.  ( J  Cn  K ) ) )
72, 6sylbid 150 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  B  e.  Y )  ->  ( F : X --> { B }  ->  F  e.  ( J  Cn  K ) ) )
87impr 379 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( B  e.  Y  /\  F : X
--> { B } ) )  ->  F  e.  ( J  Cn  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {csn 3666    X. cxp 4716   -->wf 5313   ` cfv 5317  (class class class)co 6000  TopOnctopon 14678    Cn ccn 14853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-topgen 13288  df-top 14666  df-topon 14679  df-cn 14856  df-cnp 14857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator