ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnconst Unicode version

Theorem cnconst 12330
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( B  e.  Y  /\  F : X
--> { B } ) )  ->  F  e.  ( J  Cn  K
) )

Proof of Theorem cnconst
StepHypRef Expression
1 fconst2g 5603 . . . 4  |-  ( B  e.  Y  ->  ( F : X --> { B } 
<->  F  =  ( X  X.  { B }
) ) )
21adantl 275 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  B  e.  Y )  ->  ( F : X --> { B } 
<->  F  =  ( X  X.  { B }
) ) )
3 cnconst2 12329 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )
433expa 1166 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  B  e.  Y )  ->  ( X  X.  { B }
)  e.  ( J  Cn  K ) )
5 eleq1 2180 . . . 4  |-  ( F  =  ( X  X.  { B } )  -> 
( F  e.  ( J  Cn  K )  <-> 
( X  X.  { B } )  e.  ( J  Cn  K ) ) )
64, 5syl5ibrcom 156 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  B  e.  Y )  ->  ( F  =  ( X  X.  { B } )  ->  F  e.  ( J  Cn  K ) ) )
72, 6sylbid 149 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  B  e.  Y )  ->  ( F : X --> { B }  ->  F  e.  ( J  Cn  K ) ) )
87impr 376 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( B  e.  Y  /\  F : X
--> { B } ) )  ->  F  e.  ( J  Cn  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465   {csn 3497    X. cxp 4507   -->wf 5089   ` cfv 5093  (class class class)co 5742  TopOnctopon 12104    Cn ccn 12281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-map 6512  df-topgen 12068  df-top 12092  df-topon 12105  df-cn 12284  df-cnp 12285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator