ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cntopex Unicode version

Theorem cntopex 14503
Description: The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
Assertion
Ref Expression
cntopex  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  _V

Proof of Theorem cntopex
StepHypRef Expression
1 cndsex 14502 . 2  |-  ( abs 
o.  -  )  e.  _V
2 mopnset 14501 . 2  |-  ( ( abs  o.  -  )  e.  _V  ->  ( MetOpen `  ( abs  o.  -  )
)  e.  _V )
31, 2ax-mp 5 1  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799    o. ccom 4720   ` cfv 5314    - cmin 8305   abscabs 11494   MetOpencmopn 14490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-sub 8307  df-abs 11496  df-topgen 13279  df-bl 14495  df-mopn 14496
This theorem is referenced by:  cnfldstr  14507  cnfldtset  14515
  Copyright terms: Public domain W3C validator