ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cndsex Unicode version

Theorem cndsex 14185
Description: The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
Assertion
Ref Expression
cndsex  |-  ( abs 
o.  -  )  e.  _V

Proof of Theorem cndsex
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-abs 11181 . . 3  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
2 cnex 8020 . . . 4  |-  CC  e.  _V
32mptex 5791 . . 3  |-  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )  e. 
_V
41, 3eqeltri 2269 . 2  |-  abs  e.  _V
5 df-sub 8216 . . 3  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
62, 2mpoex 6281 . . 3  |-  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )  e. 
_V
75, 6eqeltri 2269 . 2  |-  -  e.  _V
84, 7coex 5216 1  |-  ( abs 
o.  -  )  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4095    o. ccom 4668   ` cfv 5259   iota_crio 5879  (class class class)co 5925    e. cmpo 5927   CCcc 7894    + caddc 7899    x. cmul 7901    - cmin 8214   *ccj 11021   sqrcsqrt 11178   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-sub 8216  df-abs 11181
This theorem is referenced by:  cntopex  14186  cnfldstr  14190  cnfldds  14200
  Copyright terms: Public domain W3C validator