ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoopn Unicode version

Theorem hmeoopn 12961
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeoopn  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  <->  ( F " A )  e.  K
) )

Proof of Theorem hmeoopn
StepHypRef Expression
1 hmeoima 12960 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  e.  J )  ->  ( F " A )  e.  K )
21ex 114 . . 3  |-  ( F  e.  ( J Homeo K )  ->  ( A  e.  J  ->  ( F
" A )  e.  K ) )
32adantr 274 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  ->  ( F " A )  e.  K ) )
4 hmeocn 12955 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
5 cnima 12870 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A )  e.  K )  -> 
( `' F "
( F " A
) )  e.  J
)
65ex 114 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  (
( F " A
)  e.  K  -> 
( `' F "
( F " A
) )  e.  J
) )
74, 6syl 14 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  ( ( F " A )  e.  K  ->  ( `' F " ( F " A ) )  e.  J ) )
87adantr 274 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  K  -> 
( `' F "
( F " A
) )  e.  J
) )
9 hmeoopn.1 . . . . . . 7  |-  X  = 
U. J
10 eqid 2165 . . . . . . 7  |-  U. K  =  U. K
119, 10hmeof1o 12959 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
12 f1of1 5431 . . . . . 6  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
1311, 12syl 14 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-> U. K )
14 f1imacnv 5449 . . . . 5  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1513, 14sylan 281 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
1615eleq1d 2235 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( F " A
) )  e.  J  <->  A  e.  J ) )
178, 16sylibd 148 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  K  ->  A  e.  J )
)
183, 17impbid 128 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  <->  ( F " A )  e.  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    C_ wss 3116   U.cuni 3789   `'ccnv 4603   "cima 4607   -1-1->wf1 5185   -1-1-onto->wf1o 5187  (class class class)co 5842    Cn ccn 12835   Homeochmeo 12950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-top 12646  df-topon 12659  df-cn 12838  df-hmeo 12951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator