ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoopn Unicode version

Theorem hmeoopn 14248
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeoopn  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  <->  ( F " A )  e.  K
) )

Proof of Theorem hmeoopn
StepHypRef Expression
1 hmeoima 14247 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  e.  J )  ->  ( F " A )  e.  K )
21ex 115 . . 3  |-  ( F  e.  ( J Homeo K )  ->  ( A  e.  J  ->  ( F
" A )  e.  K ) )
32adantr 276 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  ->  ( F " A )  e.  K ) )
4 hmeocn 14242 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
5 cnima 14157 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A )  e.  K )  -> 
( `' F "
( F " A
) )  e.  J
)
65ex 115 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  (
( F " A
)  e.  K  -> 
( `' F "
( F " A
) )  e.  J
) )
74, 6syl 14 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  ( ( F " A )  e.  K  ->  ( `' F " ( F " A ) )  e.  J ) )
87adantr 276 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  K  -> 
( `' F "
( F " A
) )  e.  J
) )
9 hmeoopn.1 . . . . . . 7  |-  X  = 
U. J
10 eqid 2189 . . . . . . 7  |-  U. K  =  U. K
119, 10hmeof1o 14246 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
12 f1of1 5476 . . . . . 6  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
1311, 12syl 14 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-> U. K )
14 f1imacnv 5494 . . . . 5  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1513, 14sylan 283 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
1615eleq1d 2258 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( F " A
) )  e.  J  <->  A  e.  J ) )
178, 16sylibd 149 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  K  ->  A  e.  J )
)
183, 17impbid 129 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  <->  ( F " A )  e.  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160    C_ wss 3144   U.cuni 3824   `'ccnv 4640   "cima 4644   -1-1->wf1 5229   -1-1-onto->wf1o 5231  (class class class)co 5892    Cn ccn 14122   Homeochmeo 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-map 6671  df-top 13935  df-topon 13948  df-cn 14125  df-hmeo 14238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator