ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1veqaeq GIF version

Theorem f1veqaeq 5816
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1veqaeq
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5815 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑)))
2 fveq2 5558 . . . . . . . 8 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
32eqeq1d 2205 . . . . . . 7 (𝑐 = 𝐶 → ((𝐹𝑐) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝑑)))
4 eqeq1 2203 . . . . . . 7 (𝑐 = 𝐶 → (𝑐 = 𝑑𝐶 = 𝑑))
53, 4imbi12d 234 . . . . . 6 (𝑐 = 𝐶 → (((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑)))
6 fveq2 5558 . . . . . . . 8 (𝑑 = 𝐷 → (𝐹𝑑) = (𝐹𝐷))
76eqeq2d 2208 . . . . . . 7 (𝑑 = 𝐷 → ((𝐹𝐶) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝐷)))
8 eqeq2 2206 . . . . . . 7 (𝑑 = 𝐷 → (𝐶 = 𝑑𝐶 = 𝐷))
97, 8imbi12d 234 . . . . . 6 (𝑑 = 𝐷 → (((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
105, 9rspc2v 2881 . . . . 5 ((𝐶𝐴𝐷𝐴) → (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1110com12 30 . . . 4 (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1211adantl 277 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑)) → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
131, 12sylbi 121 . 2 (𝐹:𝐴1-1𝐵 → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1413imp 124 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wf 5254  1-1wf1 5255  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fv 5266
This theorem is referenced by:  f1fveq  5819  f1ocnvfvrneq  5829  f1o2ndf1  6286  fidceq  6930  difinfsnlem  7165  difinfsn  7166  iseqf1olemab  10594  iseqf1olemnanb  10595  f1ghm0to0  13402  1dom1el  15637  pwle2  15643
  Copyright terms: Public domain W3C validator