![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1veqaeq | GIF version |
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
Ref | Expression |
---|---|
f1veqaeq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff13 5768 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑))) | |
2 | fveq2 5515 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (𝐹‘𝑐) = (𝐹‘𝐶)) | |
3 | 2 | eqeq1d 2186 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → ((𝐹‘𝑐) = (𝐹‘𝑑) ↔ (𝐹‘𝐶) = (𝐹‘𝑑))) |
4 | eqeq1 2184 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (𝑐 = 𝑑 ↔ 𝐶 = 𝑑)) | |
5 | 3, 4 | imbi12d 234 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) ↔ ((𝐹‘𝐶) = (𝐹‘𝑑) → 𝐶 = 𝑑))) |
6 | fveq2 5515 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (𝐹‘𝑑) = (𝐹‘𝐷)) | |
7 | 6 | eqeq2d 2189 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → ((𝐹‘𝐶) = (𝐹‘𝑑) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
8 | eqeq2 2187 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝐶 = 𝑑 ↔ 𝐶 = 𝐷)) | |
9 | 7, 8 | imbi12d 234 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (((𝐹‘𝐶) = (𝐹‘𝑑) → 𝐶 = 𝑑) ↔ ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
10 | 5, 9 | rspc2v 2854 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
11 | 10 | com12 30 | . . . 4 ⊢ (∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
12 | 11 | adantl 277 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑)) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
13 | 1, 12 | sylbi 121 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
14 | 13 | imp 124 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⟶wf 5212 –1-1→wf1 5213 ‘cfv 5216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fv 5224 |
This theorem is referenced by: f1fveq 5772 f1ocnvfvrneq 5782 f1o2ndf1 6228 fidceq 6868 difinfsnlem 7097 difinfsn 7098 iseqf1olemab 10488 iseqf1olemnanb 10489 pwle2 14684 |
Copyright terms: Public domain | W3C validator |