ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1veqaeq GIF version

Theorem f1veqaeq 5812
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1veqaeq
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5811 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑)))
2 fveq2 5554 . . . . . . . 8 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
32eqeq1d 2202 . . . . . . 7 (𝑐 = 𝐶 → ((𝐹𝑐) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝑑)))
4 eqeq1 2200 . . . . . . 7 (𝑐 = 𝐶 → (𝑐 = 𝑑𝐶 = 𝑑))
53, 4imbi12d 234 . . . . . 6 (𝑐 = 𝐶 → (((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑)))
6 fveq2 5554 . . . . . . . 8 (𝑑 = 𝐷 → (𝐹𝑑) = (𝐹𝐷))
76eqeq2d 2205 . . . . . . 7 (𝑑 = 𝐷 → ((𝐹𝐶) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝐷)))
8 eqeq2 2203 . . . . . . 7 (𝑑 = 𝐷 → (𝐶 = 𝑑𝐶 = 𝐷))
97, 8imbi12d 234 . . . . . 6 (𝑑 = 𝐷 → (((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
105, 9rspc2v 2877 . . . . 5 ((𝐶𝐴𝐷𝐴) → (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1110com12 30 . . . 4 (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1211adantl 277 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑)) → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
131, 12sylbi 121 . 2 (𝐹:𝐴1-1𝐵 → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1413imp 124 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wf 5250  1-1wf1 5251  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262
This theorem is referenced by:  f1fveq  5815  f1ocnvfvrneq  5825  f1o2ndf1  6281  fidceq  6925  difinfsnlem  7158  difinfsn  7159  iseqf1olemab  10573  iseqf1olemnanb  10574  f1ghm0to0  13342  1dom1el  15483  pwle2  15489
  Copyright terms: Public domain W3C validator