ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemnanb Unicode version

Theorem iseqf1olemnanb 10446
Description: Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemnab.b  |-  ( ph  ->  B  e.  ( M ... N ) )
iseqf1olemnab.eq  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
iseqf1olemnab.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemnanb.a  |-  ( ph  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
iseqf1olemnanb.b  |-  ( ph  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
Assertion
Ref Expression
iseqf1olemnanb  |-  ( ph  ->  A  =  B )
Distinct variable groups:    u, A    u, B    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemnanb
StepHypRef Expression
1 iseqf1olemnab.eq . . 3  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
2 iseqf1olemqcl.k . . . . 5  |-  ( ph  ->  K  e.  ( M ... N ) )
3 iseqf1olemqcl.j . . . . 5  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 iseqf1olemqcl.a . . . . 5  |-  ( ph  ->  A  e.  ( M ... N ) )
5 iseqf1olemnab.q . . . . 5  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
62, 3, 4, 5iseqf1olemqval 10443 . . . 4  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
7 iseqf1olemnanb.a . . . . 5  |-  ( ph  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
87iffalsed 3536 . . . 4  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  =  ( J `  A ) )
96, 8eqtrd 2203 . . 3  |-  ( ph  ->  ( Q `  A
)  =  ( J `
 A ) )
10 iseqf1olemnab.b . . . . 5  |-  ( ph  ->  B  e.  ( M ... N ) )
112, 3, 10, 5iseqf1olemqval 10443 . . . 4  |-  ( ph  ->  ( Q `  B
)  =  if ( B  e.  ( K ... ( `' J `  K ) ) ,  if ( B  =  K ,  K , 
( J `  ( B  -  1 ) ) ) ,  ( J `  B ) ) )
12 iseqf1olemnanb.b . . . . 5  |-  ( ph  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
1312iffalsed 3536 . . . 4  |-  ( ph  ->  if ( B  e.  ( K ... ( `' J `  K ) ) ,  if ( B  =  K ,  K ,  ( J `  ( B  -  1 ) ) ) ,  ( J `  B
) )  =  ( J `  B ) )
1411, 13eqtrd 2203 . . 3  |-  ( ph  ->  ( Q `  B
)  =  ( J `
 B ) )
151, 9, 143eqtr3d 2211 . 2  |-  ( ph  ->  ( J `  A
)  =  ( J `
 B ) )
16 f1of1 5441 . . . 4  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) -1-1-> ( M ... N ) )
173, 16syl 14 . . 3  |-  ( ph  ->  J : ( M ... N ) -1-1-> ( M ... N ) )
18 f1veqaeq 5748 . . 3  |-  ( ( J : ( M ... N ) -1-1-> ( M ... N )  /\  ( A  e.  ( M ... N
)  /\  B  e.  ( M ... N ) ) )  ->  (
( J `  A
)  =  ( J `
 B )  ->  A  =  B )
)
1917, 4, 10, 18syl12anc 1231 . 2  |-  ( ph  ->  ( ( J `  A )  =  ( J `  B )  ->  A  =  B ) )
2015, 19mpd 13 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    e. wcel 2141   ifcif 3526    |-> cmpt 4050   `'ccnv 4610   -1-1->wf1 5195   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   1c1 7775    - cmin 8090   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  iseqf1olemmo  10448
  Copyright terms: Public domain W3C validator