ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemnanb Unicode version

Theorem iseqf1olemnanb 10493
Description: Lemma for seq3f1o 10507. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemnab.b  |-  ( ph  ->  B  e.  ( M ... N ) )
iseqf1olemnab.eq  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
iseqf1olemnab.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemnanb.a  |-  ( ph  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
iseqf1olemnanb.b  |-  ( ph  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
Assertion
Ref Expression
iseqf1olemnanb  |-  ( ph  ->  A  =  B )
Distinct variable groups:    u, A    u, B    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemnanb
StepHypRef Expression
1 iseqf1olemnab.eq . . 3  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
2 iseqf1olemqcl.k . . . . 5  |-  ( ph  ->  K  e.  ( M ... N ) )
3 iseqf1olemqcl.j . . . . 5  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 iseqf1olemqcl.a . . . . 5  |-  ( ph  ->  A  e.  ( M ... N ) )
5 iseqf1olemnab.q . . . . 5  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
62, 3, 4, 5iseqf1olemqval 10490 . . . 4  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
7 iseqf1olemnanb.a . . . . 5  |-  ( ph  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
87iffalsed 3546 . . . 4  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  =  ( J `  A ) )
96, 8eqtrd 2210 . . 3  |-  ( ph  ->  ( Q `  A
)  =  ( J `
 A ) )
10 iseqf1olemnab.b . . . . 5  |-  ( ph  ->  B  e.  ( M ... N ) )
112, 3, 10, 5iseqf1olemqval 10490 . . . 4  |-  ( ph  ->  ( Q `  B
)  =  if ( B  e.  ( K ... ( `' J `  K ) ) ,  if ( B  =  K ,  K , 
( J `  ( B  -  1 ) ) ) ,  ( J `  B ) ) )
12 iseqf1olemnanb.b . . . . 5  |-  ( ph  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
1312iffalsed 3546 . . . 4  |-  ( ph  ->  if ( B  e.  ( K ... ( `' J `  K ) ) ,  if ( B  =  K ,  K ,  ( J `  ( B  -  1 ) ) ) ,  ( J `  B
) )  =  ( J `  B ) )
1411, 13eqtrd 2210 . . 3  |-  ( ph  ->  ( Q `  B
)  =  ( J `
 B ) )
151, 9, 143eqtr3d 2218 . 2  |-  ( ph  ->  ( J `  A
)  =  ( J `
 B ) )
16 f1of1 5462 . . . 4  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) -1-1-> ( M ... N ) )
173, 16syl 14 . . 3  |-  ( ph  ->  J : ( M ... N ) -1-1-> ( M ... N ) )
18 f1veqaeq 5773 . . 3  |-  ( ( J : ( M ... N ) -1-1-> ( M ... N )  /\  ( A  e.  ( M ... N
)  /\  B  e.  ( M ... N ) ) )  ->  (
( J `  A
)  =  ( J `
 B )  ->  A  =  B )
)
1917, 4, 10, 18syl12anc 1236 . 2  |-  ( ph  ->  ( ( J `  A )  =  ( J `  B )  ->  A  =  B ) )
2015, 19mpd 13 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353    e. wcel 2148   ifcif 3536    |-> cmpt 4066   `'ccnv 4627   -1-1->wf1 5215   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5878   1c1 7815    - cmin 8131   ...cfz 10011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012
This theorem is referenced by:  iseqf1olemmo  10495
  Copyright terms: Public domain W3C validator