ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst2g GIF version

Theorem fconst2g 5827
Description: A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst2g (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))

Proof of Theorem fconst2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvconst 5800 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
21adantlr 477 . . . . . 6 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
3 fvconst2g 5826 . . . . . . 7 ((𝐵𝐶𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
43adantll 476 . . . . . 6 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
52, 4eqtr4d 2245 . . . . 5 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥))
65ralrimiva 2583 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥))
7 ffn 5449 . . . . 5 (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴)
8 fnconstg 5499 . . . . 5 (𝐵𝐶 → (𝐴 × {𝐵}) Fn 𝐴)
9 eqfnfv 5705 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥)))
107, 8, 9syl2an 289 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥)))
116, 10mpbird 167 . . 3 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → 𝐹 = (𝐴 × {𝐵}))
1211expcom 116 . 2 (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵})))
13 fconstg 5498 . . 3 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
14 feq1 5432 . . 3 (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
1513, 14syl5ibrcom 157 . 2 (𝐵𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵}))
1612, 15impbid 129 1 (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wral 2488  {csn 3646   × cxp 4694   Fn wfn 5289  wf 5290  cfv 5294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302
This theorem is referenced by:  fconst2  5829  cnconst  14873  nninfall  16286
  Copyright terms: Public domain W3C validator