![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fconst2g | GIF version |
Description: A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.) |
Ref | Expression |
---|---|
fconst2g | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconst 5706 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
2 | 1 | adantlr 477 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
3 | fvconst2g 5732 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) | |
4 | 3 | adantll 476 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) |
5 | 2, 4 | eqtr4d 2213 | . . . . 5 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) |
6 | 5 | ralrimiva 2550 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) |
7 | ffn 5367 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴) | |
8 | fnconstg 5415 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) Fn 𝐴) | |
9 | eqfnfv 5615 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) | |
10 | 7, 8, 9 | syl2an 289 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) |
11 | 6, 10 | mpbird 167 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → 𝐹 = (𝐴 × {𝐵})) |
12 | 11 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵}))) |
13 | fconstg 5414 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
14 | feq1 5350 | . . 3 ⊢ (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
15 | 13, 14 | syl5ibrcom 157 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵})) |
16 | 12, 15 | impbid 129 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 {csn 3594 × cxp 4626 Fn wfn 5213 ⟶wf 5214 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 |
This theorem is referenced by: fconst2 5735 cnconst 13819 nninfall 14843 |
Copyright terms: Public domain | W3C validator |