| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconst2g | GIF version | ||
| Description: A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.) |
| Ref | Expression |
|---|---|
| fconst2g | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst 5779 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 2 | 1 | adantlr 477 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| 3 | fvconst2g 5805 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) | |
| 4 | 3 | adantll 476 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) |
| 5 | 2, 4 | eqtr4d 2242 | . . . . 5 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) |
| 6 | 5 | ralrimiva 2580 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) |
| 7 | ffn 5431 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴) | |
| 8 | fnconstg 5480 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 9 | eqfnfv 5684 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) | |
| 10 | 7, 8, 9 | syl2an 289 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) |
| 11 | 6, 10 | mpbird 167 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → 𝐹 = (𝐴 × {𝐵})) |
| 12 | 11 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵}))) |
| 13 | fconstg 5479 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 14 | feq1 5414 | . . 3 ⊢ (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
| 15 | 13, 14 | syl5ibrcom 157 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵})) |
| 16 | 12, 15 | impbid 129 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {csn 3634 × cxp 4677 Fn wfn 5271 ⟶wf 5272 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 |
| This theorem is referenced by: fconst2 5808 cnconst 14750 nninfall 16020 |
| Copyright terms: Public domain | W3C validator |