| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdmi | Unicode version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
| Ref | Expression |
|---|---|
| ffvelcdmi.1 |
|
| Ref | Expression |
|---|---|
| ffvelcdmi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdmi.1 |
. 2
| |
| 2 | ffvelcdm 5713 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: omgadd 10947 cjcl 11159 climmpt 11611 cn1lem 11625 climcn1lem 11630 fsumrelem 11782 efcl 11975 sincl 12017 coscl 12018 algcvg 12370 algcvgb 12372 algcvga 12373 algfx 12374 eucalgcvga 12380 eucalg 12381 sqpweven 12497 2sqpwodd 12498 ennnfonelemnn0 12793 relogcl 15334 nninfomnilem 15955 |
| Copyright terms: Public domain | W3C validator |