ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelcdmi Unicode version

Theorem ffvelcdmi 5699
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
Hypothesis
Ref Expression
ffvelcdmi.1  |-  F : A
--> B
Assertion
Ref Expression
ffvelcdmi  |-  ( C  e.  A  ->  ( F `  C )  e.  B )

Proof of Theorem ffvelcdmi
StepHypRef Expression
1 ffvelcdmi.1 . 2  |-  F : A
--> B
2 ffvelcdm 5698 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F `  C
)  e.  B )
31, 2mpan 424 1  |-  ( C  e.  A  ->  ( F `  C )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   -->wf 5255   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267
This theorem is referenced by:  omgadd  10911  cjcl  11030  climmpt  11482  cn1lem  11496  climcn1lem  11501  fsumrelem  11653  efcl  11846  sincl  11888  coscl  11889  algcvg  12241  algcvgb  12243  algcvga  12244  algfx  12245  eucalgcvga  12251  eucalg  12252  sqpweven  12368  2sqpwodd  12369  ennnfonelemnn0  12664  relogcl  15182  nninfomnilem  15749
  Copyright terms: Public domain W3C validator