| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdmi | Unicode version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
| Ref | Expression |
|---|---|
| ffvelcdmi.1 |
|
| Ref | Expression |
|---|---|
| ffvelcdmi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdmi.1 |
. 2
| |
| 2 | ffvelcdm 5698 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: omgadd 10911 cjcl 11030 climmpt 11482 cn1lem 11496 climcn1lem 11501 fsumrelem 11653 efcl 11846 sincl 11888 coscl 11889 algcvg 12241 algcvgb 12243 algcvga 12244 algfx 12245 eucalgcvga 12251 eucalg 12252 sqpweven 12368 2sqpwodd 12369 ennnfonelemnn0 12664 relogcl 15182 nninfomnilem 15749 |
| Copyright terms: Public domain | W3C validator |