| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdmi | Unicode version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
| Ref | Expression |
|---|---|
| ffvelcdmi.1 |
|
| Ref | Expression |
|---|---|
| ffvelcdmi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdmi.1 |
. 2
| |
| 2 | ffvelcdm 5731 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 |
| This theorem is referenced by: omgadd 10979 cjcl 11244 climmpt 11696 cn1lem 11710 climcn1lem 11715 fsumrelem 11867 efcl 12060 sincl 12102 coscl 12103 algcvg 12455 algcvgb 12457 algcvga 12458 algfx 12459 eucalgcvga 12465 eucalg 12466 sqpweven 12582 2sqpwodd 12583 ennnfonelemnn0 12878 relogcl 15419 nninfomnilem 16127 |
| Copyright terms: Public domain | W3C validator |