ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelcdmi Unicode version

Theorem ffvelcdmi 5732
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
Hypothesis
Ref Expression
ffvelcdmi.1  |-  F : A
--> B
Assertion
Ref Expression
ffvelcdmi  |-  ( C  e.  A  ->  ( F `  C )  e.  B )

Proof of Theorem ffvelcdmi
StepHypRef Expression
1 ffvelcdmi.1 . 2  |-  F : A
--> B
2 ffvelcdm 5731 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F `  C
)  e.  B )
31, 2mpan 424 1  |-  ( C  e.  A  ->  ( F `  C )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2177   -->wf 5281   ` cfv 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293
This theorem is referenced by:  omgadd  10979  cjcl  11244  climmpt  11696  cn1lem  11710  climcn1lem  11715  fsumrelem  11867  efcl  12060  sincl  12102  coscl  12103  algcvg  12455  algcvgb  12457  algcvga  12458  algfx  12459  eucalgcvga  12465  eucalg  12466  sqpweven  12582  2sqpwodd  12583  ennnfonelemnn0  12878  relogcl  15419  nninfomnilem  16127
  Copyright terms: Public domain W3C validator