ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelcdmi Unicode version

Theorem ffvelcdmi 5696
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
Hypothesis
Ref Expression
ffvelcdmi.1  |-  F : A
--> B
Assertion
Ref Expression
ffvelcdmi  |-  ( C  e.  A  ->  ( F `  C )  e.  B )

Proof of Theorem ffvelcdmi
StepHypRef Expression
1 ffvelcdmi.1 . 2  |-  F : A
--> B
2 ffvelcdm 5695 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F `  C
)  e.  B )
31, 2mpan 424 1  |-  ( C  e.  A  ->  ( F `  C )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   -->wf 5254   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  omgadd  10894  cjcl  11013  climmpt  11465  cn1lem  11479  climcn1lem  11484  fsumrelem  11636  efcl  11829  sincl  11871  coscl  11872  algcvg  12216  algcvgb  12218  algcvga  12219  algfx  12220  eucalgcvga  12226  eucalg  12227  sqpweven  12343  2sqpwodd  12344  ennnfonelemnn0  12639  relogcl  15098  nninfomnilem  15662
  Copyright terms: Public domain W3C validator