Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffvelcdmi | Unicode version |
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
Ref | Expression |
---|---|
ffvelcdmi.1 |
Ref | Expression |
---|---|
ffvelcdmi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdmi.1 | . 2 | |
2 | ffvelcdm 5633 | . 2 | |
3 | 1, 2 | mpan 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2142 wf 5196 cfv 5200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-v 2733 df-sbc 2957 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-br 3991 df-opab 4052 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-fv 5208 |
This theorem is referenced by: omgadd 10741 cjcl 10816 climmpt 11267 cn1lem 11281 climcn1lem 11286 fsumrelem 11438 efcl 11631 sincl 11673 coscl 11674 algcvg 12006 algcvgb 12008 algcvga 12009 algfx 12010 eucalgcvga 12016 eucalg 12017 sqpweven 12133 2sqpwodd 12134 ennnfonelemnn0 12381 relogcl 13694 nninfomnilem 14168 |
Copyright terms: Public domain | W3C validator |