ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cn1lem Unicode version

Theorem cn1lem 11255
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
cn1lem.1  |-  F : CC
--> CC
cn1lem.2  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
Assertion
Ref Expression
cn1lem  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Distinct variable groups:    x, y, z   
y, A, z    y, F
Allowed substitution hints:    A( x)    F( x, z)

Proof of Theorem cn1lem
StepHypRef Expression
1 simpr 109 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  e.  RR+ )
2 simpr 109 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  z  e.  CC )
3 simpll 519 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  A  e.  CC )
4 cn1lem.2 . . . . 5  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
52, 3, 4syl2anc 409 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
6 cn1lem.1 . . . . . . . . 9  |-  F : CC
--> CC
76ffvelrni 5619 . . . . . . . 8  |-  ( z  e.  CC  ->  ( F `  z )  e.  CC )
82, 7syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  z )  e.  CC )
96ffvelrni 5619 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F `  A )  e.  CC )
103, 9syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  A )  e.  CC )
118, 10subcld 8209 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( F `
 z )  -  ( F `  A ) )  e.  CC )
1211abscld 11123 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR )
132, 3subcld 8209 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( z  -  A )  e.  CC )
1413abscld 11123 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
z  -  A ) )  e.  RR )
15 rpre 9596 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  RR )
1615ad2antlr 481 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  x  e.  RR )
17 lelttr 7987 . . . . 5  |-  ( ( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR  /\  ( abs `  ( z  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) )  /\  ( abs `  ( z  -  A ) )  < 
x )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  <  x
) )
1812, 14, 16, 17syl3anc 1228 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <_  ( abs `  (
z  -  A ) )  /\  ( abs `  ( z  -  A
) )  <  x
)  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
) )
195, 18mpand 426 . . 3  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( abs `  ( z  -  A
) )  <  x  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2019ralrimiva 2539 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
21 breq2 3986 . . . . 5  |-  ( y  =  x  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  x
) )
2221imbi1d 230 . . . 4  |-  ( y  =  x  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2322ralbidv 2466 . . 3  |-  ( y  =  x  ->  ( A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2423rspcev 2830 . 2  |-  ( ( x  e.  RR+  /\  A. z  e.  CC  (
( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
251, 20, 24syl2anc 409 1  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752    < clt 7933    <_ cle 7934    - cmin 8069   RR+crp 9589   abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  abscn2  11256  cjcn2  11257  recn2  11258  imcn2  11259
  Copyright terms: Public domain W3C validator