ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cn1lem Unicode version

Theorem cn1lem 11115
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
cn1lem.1  |-  F : CC
--> CC
cn1lem.2  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
Assertion
Ref Expression
cn1lem  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Distinct variable groups:    x, y, z   
y, A, z    y, F
Allowed substitution hints:    A( x)    F( x, z)

Proof of Theorem cn1lem
StepHypRef Expression
1 simpr 109 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  e.  RR+ )
2 simpr 109 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  z  e.  CC )
3 simpll 519 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  A  e.  CC )
4 cn1lem.2 . . . . 5  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
52, 3, 4syl2anc 409 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
6 cn1lem.1 . . . . . . . . 9  |-  F : CC
--> CC
76ffvelrni 5562 . . . . . . . 8  |-  ( z  e.  CC  ->  ( F `  z )  e.  CC )
82, 7syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  z )  e.  CC )
96ffvelrni 5562 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F `  A )  e.  CC )
103, 9syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  A )  e.  CC )
118, 10subcld 8097 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( F `
 z )  -  ( F `  A ) )  e.  CC )
1211abscld 10985 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR )
132, 3subcld 8097 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( z  -  A )  e.  CC )
1413abscld 10985 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
z  -  A ) )  e.  RR )
15 rpre 9477 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  RR )
1615ad2antlr 481 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  x  e.  RR )
17 lelttr 7876 . . . . 5  |-  ( ( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR  /\  ( abs `  ( z  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) )  /\  ( abs `  ( z  -  A ) )  < 
x )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  <  x
) )
1812, 14, 16, 17syl3anc 1217 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <_  ( abs `  (
z  -  A ) )  /\  ( abs `  ( z  -  A
) )  <  x
)  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
) )
195, 18mpand 426 . . 3  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( abs `  ( z  -  A
) )  <  x  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2019ralrimiva 2508 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
21 breq2 3941 . . . . 5  |-  ( y  =  x  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  x
) )
2221imbi1d 230 . . . 4  |-  ( y  =  x  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2322ralbidv 2438 . . 3  |-  ( y  =  x  ->  ( A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2423rspcev 2793 . 2  |-  ( ( x  e.  RR+  /\  A. z  e.  CC  (
( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
251, 20, 24syl2anc 409 1  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1481   A.wral 2417   E.wrex 2418   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643    < clt 7824    <_ cle 7825    - cmin 7957   RR+crp 9470   abscabs 10801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  abscn2  11116  cjcn2  11117  recn2  11118  imcn2  11119
  Copyright terms: Public domain W3C validator