ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cn1lem Unicode version

Theorem cn1lem 11314
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
cn1lem.1  |-  F : CC
--> CC
cn1lem.2  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
Assertion
Ref Expression
cn1lem  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Distinct variable groups:    x, y, z   
y, A, z    y, F
Allowed substitution hints:    A( x)    F( x, z)

Proof of Theorem cn1lem
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  e.  RR+ )
2 simpr 110 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  z  e.  CC )
3 simpll 527 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  A  e.  CC )
4 cn1lem.2 . . . . 5  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
52, 3, 4syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
6 cn1lem.1 . . . . . . . . 9  |-  F : CC
--> CC
76ffvelcdmi 5648 . . . . . . . 8  |-  ( z  e.  CC  ->  ( F `  z )  e.  CC )
82, 7syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  z )  e.  CC )
96ffvelcdmi 5648 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F `  A )  e.  CC )
103, 9syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  A )  e.  CC )
118, 10subcld 8263 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( F `
 z )  -  ( F `  A ) )  e.  CC )
1211abscld 11182 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR )
132, 3subcld 8263 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( z  -  A )  e.  CC )
1413abscld 11182 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
z  -  A ) )  e.  RR )
15 rpre 9655 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  RR )
1615ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  x  e.  RR )
17 lelttr 8041 . . . . 5  |-  ( ( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR  /\  ( abs `  ( z  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) )  /\  ( abs `  ( z  -  A ) )  < 
x )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  <  x
) )
1812, 14, 16, 17syl3anc 1238 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <_  ( abs `  (
z  -  A ) )  /\  ( abs `  ( z  -  A
) )  <  x
)  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
) )
195, 18mpand 429 . . 3  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( abs `  ( z  -  A
) )  <  x  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2019ralrimiva 2550 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
21 breq2 4006 . . . . 5  |-  ( y  =  x  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  x
) )
2221imbi1d 231 . . . 4  |-  ( y  =  x  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2322ralbidv 2477 . . 3  |-  ( y  =  x  ->  ( A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2423rspcev 2841 . 2  |-  ( ( x  e.  RR+  /\  A. z  e.  CC  (
( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
251, 20, 24syl2anc 411 1  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4002   -->wf 5210   ` cfv 5214  (class class class)co 5871   CCcc 7805   RRcr 7806    < clt 7987    <_ cle 7988    - cmin 8123   RR+crp 9648   abscabs 10998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7898  ax-resscn 7899  ax-1cn 7900  ax-1re 7901  ax-icn 7902  ax-addcl 7903  ax-addrcl 7904  ax-mulcl 7905  ax-mulrcl 7906  ax-addcom 7907  ax-mulcom 7908  ax-addass 7909  ax-mulass 7910  ax-distr 7911  ax-i2m1 7912  ax-0lt1 7913  ax-1rid 7914  ax-0id 7915  ax-rnegex 7916  ax-precex 7917  ax-cnre 7918  ax-pre-ltirr 7919  ax-pre-ltwlin 7920  ax-pre-lttrn 7921  ax-pre-apti 7922  ax-pre-ltadd 7923  ax-pre-mulgt0 7924  ax-pre-mulext 7925  ax-arch 7926  ax-caucvg 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5176  df-fun 5216  df-fn 5217  df-f 5218  df-f1 5219  df-fo 5220  df-f1o 5221  df-fv 5222  df-riota 5827  df-ov 5874  df-oprab 5875  df-mpo 5876  df-1st 6137  df-2nd 6138  df-recs 6302  df-frec 6388  df-pnf 7989  df-mnf 7990  df-xr 7991  df-ltxr 7992  df-le 7993  df-sub 8125  df-neg 8126  df-reap 8527  df-ap 8534  df-div 8625  df-inn 8915  df-2 8973  df-3 8974  df-4 8975  df-n0 9172  df-z 9249  df-uz 9524  df-rp 9649  df-seqfrec 10440  df-exp 10514  df-cj 10843  df-re 10844  df-im 10845  df-rsqrt 10999  df-abs 11000
This theorem is referenced by:  abscn2  11315  cjcn2  11316  recn2  11317  imcn2  11318
  Copyright terms: Public domain W3C validator