| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdmi | GIF version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
| Ref | Expression |
|---|---|
| ffvelcdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| ffvelcdmi | ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | ffvelcdm 5720 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⟶wf 5272 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 |
| This theorem is referenced by: omgadd 10954 cjcl 11203 climmpt 11655 cn1lem 11669 climcn1lem 11674 fsumrelem 11826 efcl 12019 sincl 12061 coscl 12062 algcvg 12414 algcvgb 12416 algcvga 12417 algfx 12418 eucalgcvga 12424 eucalg 12425 sqpweven 12541 2sqpwodd 12542 ennnfonelemnn0 12837 relogcl 15378 nninfomnilem 16029 |
| Copyright terms: Public domain | W3C validator |