ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelcdmi GIF version

Theorem ffvelcdmi 5742
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
Hypothesis
Ref Expression
ffvelcdmi.1 𝐹:𝐴𝐵
Assertion
Ref Expression
ffvelcdmi (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem ffvelcdmi
StepHypRef Expression
1 ffvelcdmi.1 . 2 𝐹:𝐴𝐵
2 ffvelcdm 5741 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
31, 2mpan 424 1 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  wf 5290  cfv 5294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302
This theorem is referenced by:  omgadd  10991  cjcl  11325  climmpt  11777  cn1lem  11791  climcn1lem  11796  fsumrelem  11948  efcl  12141  sincl  12183  coscl  12184  algcvg  12536  algcvgb  12538  algcvga  12539  algfx  12540  eucalgcvga  12546  eucalg  12547  sqpweven  12663  2sqpwodd  12664  ennnfonelemnn0  12959  relogcl  15501  nninfomnilem  16295
  Copyright terms: Public domain W3C validator