ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelcdmi GIF version

Theorem ffvelcdmi 5693
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
Hypothesis
Ref Expression
ffvelcdmi.1 𝐹:𝐴𝐵
Assertion
Ref Expression
ffvelcdmi (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem ffvelcdmi
StepHypRef Expression
1 ffvelcdmi.1 . 2 𝐹:𝐴𝐵
2 ffvelcdm 5692 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
31, 2mpan 424 1 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wf 5251  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
This theorem is referenced by:  omgadd  10876  cjcl  10995  climmpt  11446  cn1lem  11460  climcn1lem  11465  fsumrelem  11617  efcl  11810  sincl  11852  coscl  11853  algcvg  12189  algcvgb  12191  algcvga  12192  algfx  12193  eucalgcvga  12199  eucalg  12200  sqpweven  12316  2sqpwodd  12317  ennnfonelemnn0  12582  relogcl  15038  nninfomnilem  15578
  Copyright terms: Public domain W3C validator