| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdmi | GIF version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
| Ref | Expression |
|---|---|
| ffvelcdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| ffvelcdmi | ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | ffvelcdm 5741 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ⟶wf 5290 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 |
| This theorem is referenced by: omgadd 10991 cjcl 11325 climmpt 11777 cn1lem 11791 climcn1lem 11796 fsumrelem 11948 efcl 12141 sincl 12183 coscl 12184 algcvg 12536 algcvgb 12538 algcvga 12539 algfx 12540 eucalgcvga 12546 eucalg 12547 sqpweven 12663 2sqpwodd 12664 ennnfonelemnn0 12959 relogcl 15501 nninfomnilem 16295 |
| Copyright terms: Public domain | W3C validator |