ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelcdmi GIF version

Theorem ffvelcdmi 5692
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
Hypothesis
Ref Expression
ffvelcdmi.1 𝐹:𝐴𝐵
Assertion
Ref Expression
ffvelcdmi (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem ffvelcdmi
StepHypRef Expression
1 ffvelcdmi.1 . 2 𝐹:𝐴𝐵
2 ffvelcdm 5691 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
31, 2mpan 424 1 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wf 5250  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262
This theorem is referenced by:  omgadd  10873  cjcl  10992  climmpt  11443  cn1lem  11457  climcn1lem  11462  fsumrelem  11614  efcl  11807  sincl  11849  coscl  11850  algcvg  12186  algcvgb  12188  algcvga  12189  algfx  12190  eucalgcvga  12196  eucalg  12197  sqpweven  12313  2sqpwodd  12314  ennnfonelemnn0  12579  relogcl  14997  nninfomnilem  15508
  Copyright terms: Public domain W3C validator