ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalg Unicode version

Theorem eucalg 11483
Description: Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. Theorem 1.15 in [ApostolNT] p. 20.

Upon halting, the 1st member of the final state  ( R `  N ) is equal to the gcd of the values comprising the input state  <. M ,  N >.. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by Mario Carneiro, 29-May-2014.)

Hypotheses
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
eucalg.2  |-  R  =  seq 0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
eucalg.3  |-  A  = 
<. M ,  N >.
Assertion
Ref Expression
eucalg  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1st `  ( R `  N )
)  =  ( M  gcd  N ) )
Distinct variable groups:    x, y, M   
x, N, y    x, A, y    x, R
Allowed substitution hints:    R( y)    E( x, y)

Proof of Theorem eucalg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9152 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
2 eucalg.2 . . . . . . . 8  |-  R  =  seq 0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
3 0zd 8860 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
4 eucalg.3 . . . . . . . . 9  |-  A  = 
<. M ,  N >.
5 opelxpi 4499 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  <. M ,  N >.  e.  ( NN0  X.  NN0 ) )
64, 5syl5eqel 2181 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  A  e.  ( NN0  X. 
NN0 ) )
7 eucalgval.1 . . . . . . . . . 10  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
87eucalgf 11479 . . . . . . . . 9  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
98a1i 9 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  E : ( NN0  X.  NN0 ) --> ( NN0  X.  NN0 ) )
101, 2, 3, 6, 9algrf 11469 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  R : NN0 --> ( NN0 
X.  NN0 ) )
11 ffvelrn 5471 . . . . . . 7  |-  ( ( R : NN0 --> ( NN0 
X.  NN0 )  /\  N  e.  NN0 )  ->  ( R `  N )  e.  ( NN0  X.  NN0 ) )
1210, 11sylancom 412 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  N
)  e.  ( NN0 
X.  NN0 ) )
13 1st2nd2 5983 . . . . . 6  |-  ( ( R `  N )  e.  ( NN0  X.  NN0 )  ->  ( R `
 N )  = 
<. ( 1st `  ( R `  N )
) ,  ( 2nd `  ( R `  N
) ) >. )
1412, 13syl 14 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  N
)  =  <. ( 1st `  ( R `  N ) ) ,  ( 2nd `  ( R `  N )
) >. )
1514fveq2d 5344 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 N ) )  =  (  gcd  `  <. ( 1st `  ( R `
 N ) ) ,  ( 2nd `  ( R `  N )
) >. ) )
16 df-ov 5693 . . . 4  |-  ( ( 1st `  ( R `
 N ) )  gcd  ( 2nd `  ( R `  N )
) )  =  (  gcd  `  <. ( 1st `  ( R `  N
) ) ,  ( 2nd `  ( R `
 N ) )
>. )
1715, 16syl6eqr 2145 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 N ) )  =  ( ( 1st `  ( R `  N
) )  gcd  ( 2nd `  ( R `  N ) ) ) )
184fveq2i 5343 . . . . . . . 8  |-  ( 2nd `  A )  =  ( 2nd `  <. M ,  N >. )
19 op2ndg 5960 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  <. M ,  N >. )  =  N )
2018, 19syl5eq 2139 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  A
)  =  N )
2120fveq2d 5344 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  ( 2nd `  A ) )  =  ( R `  N ) )
2221fveq2d 5344 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  ( R `  ( 2nd `  A ) ) )  =  ( 2nd `  ( R `  N )
) )
23 xp2nd 5975 . . . . . . . . 9  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  NN0 )
2423nn0zd 8965 . . . . . . . 8  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  ZZ )
25 uzid 9132 . . . . . . . 8  |-  ( ( 2nd `  A )  e.  ZZ  ->  ( 2nd `  A )  e.  ( ZZ>= `  ( 2nd `  A ) ) )
2624, 25syl 14 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  (
ZZ>= `  ( 2nd `  A
) ) )
27 eqid 2095 . . . . . . . 8  |-  ( 2nd `  A )  =  ( 2nd `  A )
287, 2, 27eucalgcvga 11482 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  A )  e.  ( ZZ>= `  ( 2nd `  A ) )  ->  ( 2nd `  ( R `  ( 2nd `  A ) ) )  =  0 ) )
2926, 28mpd 13 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  ( R `  ( 2nd `  A ) ) )  =  0 )
306, 29syl 14 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  ( R `  ( 2nd `  A ) ) )  =  0 )
3122, 30eqtr3d 2129 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  ( R `  N )
)  =  0 )
3231oveq2d 5706 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 1st `  ( R `  N )
)  gcd  ( 2nd `  ( R `  N
) ) )  =  ( ( 1st `  ( R `  N )
)  gcd  0 ) )
33 xp1st 5974 . . . 4  |-  ( ( R `  N )  e.  ( NN0  X.  NN0 )  ->  ( 1st `  ( R `  N
) )  e.  NN0 )
34 nn0gcdid0 11414 . . . 4  |-  ( ( 1st `  ( R `
 N ) )  e.  NN0  ->  ( ( 1st `  ( R `
 N ) )  gcd  0 )  =  ( 1st `  ( R `  N )
) )
3512, 33, 343syl 17 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 1st `  ( R `  N )
)  gcd  0 )  =  ( 1st `  ( R `  N )
) )
3617, 32, 353eqtrrd 2132 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1st `  ( R `  N )
)  =  (  gcd  `  ( R `  N
) ) )
377eucalginv 11480 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  (  gcd  `  ( E `  z
) )  =  (  gcd  `  z )
)
388ffvelrni 5472 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( E `
 z )  e.  ( NN0  X.  NN0 ) )
39 fvres 5364 . . . . . . 7  |-  ( ( E `  z )  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  (  gcd  `  ( E `  z
) ) )
4038, 39syl 14 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  (  gcd  `  ( E `  z
) ) )
41 fvres 5364 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  z )  =  (  gcd  `  z )
)
4237, 40, 413eqtr4d 2137 . . . . 5  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  z ) )
432, 8, 42alginv 11471 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  N  e.  NN0 )  ->  (
(  gcd  |`  ( NN0 
X.  NN0 ) ) `  ( R `  N ) )  =  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  0 ) ) )
446, 43sylancom 412 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( (  gcd  |`  ( NN0  X.  NN0 ) ) `
 ( R `  N ) )  =  ( (  gcd  |`  ( NN0  X.  NN0 ) ) `
 ( R ` 
0 ) ) )
45 fvres 5364 . . . 4  |-  ( ( R `  N )  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  N ) )  =  (  gcd  `  ( R `  N
) ) )
4612, 45syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( (  gcd  |`  ( NN0  X.  NN0 ) ) `
 ( R `  N ) )  =  (  gcd  `  ( R `  N )
) )
47 0nn0 8786 . . . . 5  |-  0  e.  NN0
48 ffvelrn 5471 . . . . 5  |-  ( ( R : NN0 --> ( NN0 
X.  NN0 )  /\  0  e.  NN0 )  ->  ( R `  0 )  e.  ( NN0  X.  NN0 ) )
4910, 47, 48sylancl 405 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  0
)  e.  ( NN0 
X.  NN0 ) )
50 fvres 5364 . . . 4  |-  ( ( R `  0 )  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  0 ) )  =  (  gcd  `  ( R `  0
) ) )
5149, 50syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( (  gcd  |`  ( NN0  X.  NN0 ) ) `
 ( R ` 
0 ) )  =  (  gcd  `  ( R `  0 )
) )
5244, 46, 513eqtr3d 2135 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 N ) )  =  (  gcd  `  ( R `  0 )
) )
531, 2, 3, 6, 9ialgr0 11468 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  0
)  =  A )
5453, 4syl6eq 2143 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  0
)  =  <. M ,  N >. )
5554fveq2d 5344 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 0 ) )  =  (  gcd  `  <. M ,  N >. )
)
56 df-ov 5693 . . 3  |-  ( M  gcd  N )  =  (  gcd  `  <. M ,  N >. )
5755, 56syl6eqr 2145 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 0 ) )  =  ( M  gcd  N ) )
5836, 52, 573eqtrd 2131 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1st `  ( R `  N )
)  =  ( M  gcd  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1296    e. wcel 1445   ifcif 3413   {csn 3466   <.cop 3469    X. cxp 4465    |` cres 4469    o. ccom 4471   -->wf 5045   ` cfv 5049  (class class class)co 5690    |-> cmpt2 5692   1stc1st 5947   2ndc2nd 5948   0cc0 7447   NN0cn0 8771   ZZcz 8848   ZZ>=cuz 9118    mod cmo 9878    seqcseq 10001    gcd cgcd 11380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-sup 6759  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-fz 9574  df-fzo 9703  df-fl 9826  df-mod 9879  df-iseq 10002  df-seq3 10003  df-exp 10086  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563  df-dvds 11239  df-gcd 11381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator