ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalg Unicode version

Theorem eucalg 12456
Description: Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. Theorem 1.15 in [ApostolNT] p. 20.

Upon halting, the 1st member of the final state  ( R `  N ) is equal to the gcd of the values comprising the input state  <. M ,  N >.. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by Mario Carneiro, 29-May-2014.)

Hypotheses
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
eucalg.2  |-  R  =  seq 0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
eucalg.3  |-  A  = 
<. M ,  N >.
Assertion
Ref Expression
eucalg  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1st `  ( R `  N )
)  =  ( M  gcd  N ) )
Distinct variable groups:    x, y, M   
x, N, y    x, A, y    x, R
Allowed substitution hints:    R( y)    E( x, y)

Proof of Theorem eucalg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9703 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
2 eucalg.2 . . . . . . . 8  |-  R  =  seq 0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
3 0zd 9404 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
4 eucalg.3 . . . . . . . . 9  |-  A  = 
<. M ,  N >.
5 opelxpi 4715 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  <. M ,  N >.  e.  ( NN0  X.  NN0 ) )
64, 5eqeltrid 2293 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  A  e.  ( NN0  X. 
NN0 ) )
7 eucalgval.1 . . . . . . . . . 10  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
87eucalgf 12452 . . . . . . . . 9  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
98a1i 9 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  E : ( NN0  X.  NN0 ) --> ( NN0  X.  NN0 ) )
101, 2, 3, 6, 9algrf 12442 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  R : NN0 --> ( NN0 
X.  NN0 ) )
11 ffvelcdm 5726 . . . . . . 7  |-  ( ( R : NN0 --> ( NN0 
X.  NN0 )  /\  N  e.  NN0 )  ->  ( R `  N )  e.  ( NN0  X.  NN0 ) )
1210, 11sylancom 420 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  N
)  e.  ( NN0 
X.  NN0 ) )
13 1st2nd2 6274 . . . . . 6  |-  ( ( R `  N )  e.  ( NN0  X.  NN0 )  ->  ( R `
 N )  = 
<. ( 1st `  ( R `  N )
) ,  ( 2nd `  ( R `  N
) ) >. )
1412, 13syl 14 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  N
)  =  <. ( 1st `  ( R `  N ) ) ,  ( 2nd `  ( R `  N )
) >. )
1514fveq2d 5593 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 N ) )  =  (  gcd  `  <. ( 1st `  ( R `
 N ) ) ,  ( 2nd `  ( R `  N )
) >. ) )
16 df-ov 5960 . . . 4  |-  ( ( 1st `  ( R `
 N ) )  gcd  ( 2nd `  ( R `  N )
) )  =  (  gcd  `  <. ( 1st `  ( R `  N
) ) ,  ( 2nd `  ( R `
 N ) )
>. )
1715, 16eqtr4di 2257 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 N ) )  =  ( ( 1st `  ( R `  N
) )  gcd  ( 2nd `  ( R `  N ) ) ) )
184fveq2i 5592 . . . . . . . 8  |-  ( 2nd `  A )  =  ( 2nd `  <. M ,  N >. )
19 op2ndg 6250 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  <. M ,  N >. )  =  N )
2018, 19eqtrid 2251 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  A
)  =  N )
2120fveq2d 5593 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  ( 2nd `  A ) )  =  ( R `  N ) )
2221fveq2d 5593 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  ( R `  ( 2nd `  A ) ) )  =  ( 2nd `  ( R `  N )
) )
23 xp2nd 6265 . . . . . . . . 9  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  NN0 )
2423nn0zd 9513 . . . . . . . 8  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  ZZ )
25 uzid 9682 . . . . . . . 8  |-  ( ( 2nd `  A )  e.  ZZ  ->  ( 2nd `  A )  e.  ( ZZ>= `  ( 2nd `  A ) ) )
2624, 25syl 14 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  (
ZZ>= `  ( 2nd `  A
) ) )
27 eqid 2206 . . . . . . . 8  |-  ( 2nd `  A )  =  ( 2nd `  A )
287, 2, 27eucalgcvga 12455 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  A )  e.  ( ZZ>= `  ( 2nd `  A ) )  ->  ( 2nd `  ( R `  ( 2nd `  A ) ) )  =  0 ) )
2926, 28mpd 13 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  ( R `  ( 2nd `  A ) ) )  =  0 )
306, 29syl 14 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  ( R `  ( 2nd `  A ) ) )  =  0 )
3122, 30eqtr3d 2241 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 2nd `  ( R `  N )
)  =  0 )
3231oveq2d 5973 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 1st `  ( R `  N )
)  gcd  ( 2nd `  ( R `  N
) ) )  =  ( ( 1st `  ( R `  N )
)  gcd  0 ) )
33 xp1st 6264 . . . 4  |-  ( ( R `  N )  e.  ( NN0  X.  NN0 )  ->  ( 1st `  ( R `  N
) )  e.  NN0 )
34 nn0gcdid0 12377 . . . 4  |-  ( ( 1st `  ( R `
 N ) )  e.  NN0  ->  ( ( 1st `  ( R `
 N ) )  gcd  0 )  =  ( 1st `  ( R `  N )
) )
3512, 33, 343syl 17 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 1st `  ( R `  N )
)  gcd  0 )  =  ( 1st `  ( R `  N )
) )
3617, 32, 353eqtrrd 2244 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1st `  ( R `  N )
)  =  (  gcd  `  ( R `  N
) ) )
377eucalginv 12453 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  (  gcd  `  ( E `  z
) )  =  (  gcd  `  z )
)
388ffvelcdmi 5727 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( E `
 z )  e.  ( NN0  X.  NN0 ) )
39 fvres 5613 . . . . . . 7  |-  ( ( E `  z )  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  (  gcd  `  ( E `  z
) ) )
4038, 39syl 14 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  (  gcd  `  ( E `  z
) ) )
41 fvres 5613 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  z )  =  (  gcd  `  z )
)
4237, 40, 413eqtr4d 2249 . . . . 5  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  z ) )
432, 8, 42alginv 12444 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  N  e.  NN0 )  ->  (
(  gcd  |`  ( NN0 
X.  NN0 ) ) `  ( R `  N ) )  =  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  0 ) ) )
446, 43sylancom 420 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( (  gcd  |`  ( NN0  X.  NN0 ) ) `
 ( R `  N ) )  =  ( (  gcd  |`  ( NN0  X.  NN0 ) ) `
 ( R ` 
0 ) ) )
45 fvres 5613 . . . 4  |-  ( ( R `  N )  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  N ) )  =  (  gcd  `  ( R `  N
) ) )
4612, 45syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( (  gcd  |`  ( NN0  X.  NN0 ) ) `
 ( R `  N ) )  =  (  gcd  `  ( R `  N )
) )
47 0nn0 9330 . . . . 5  |-  0  e.  NN0
48 ffvelcdm 5726 . . . . 5  |-  ( ( R : NN0 --> ( NN0 
X.  NN0 )  /\  0  e.  NN0 )  ->  ( R `  0 )  e.  ( NN0  X.  NN0 ) )
4910, 47, 48sylancl 413 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  0
)  e.  ( NN0 
X.  NN0 ) )
50 fvres 5613 . . . 4  |-  ( ( R `  0 )  e.  ( NN0  X.  NN0 )  ->  ( (  gcd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  0 ) )  =  (  gcd  `  ( R `  0
) ) )
5149, 50syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( (  gcd  |`  ( NN0  X.  NN0 ) ) `
 ( R ` 
0 ) )  =  (  gcd  `  ( R `  0 )
) )
5244, 46, 513eqtr3d 2247 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 N ) )  =  (  gcd  `  ( R `  0 )
) )
531, 2, 3, 6, 9ialgr0 12441 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  0
)  =  A )
5453, 4eqtrdi 2255 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( R `  0
)  =  <. M ,  N >. )
5554fveq2d 5593 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 0 ) )  =  (  gcd  `  <. M ,  N >. )
)
56 df-ov 5960 . . 3  |-  ( M  gcd  N )  =  (  gcd  `  <. M ,  N >. )
5755, 56eqtr4di 2257 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
(  gcd  `  ( R `
 0 ) )  =  ( M  gcd  N ) )
5836, 52, 573eqtrd 2243 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1st `  ( R `  N )
)  =  ( M  gcd  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   ifcif 3575   {csn 3638   <.cop 3641    X. cxp 4681    |` cres 4685    o. ccom 4687   -->wf 5276   ` cfv 5280  (class class class)co 5957    e. cmpo 5959   1stc1st 6237   2ndc2nd 6238   0cc0 7945   NN0cn0 9315   ZZcz 9392   ZZ>=cuz 9668    mod cmo 10489    seqcseq 10614    gcd cgcd 12349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator