ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climmpt Unicode version

Theorem climmpt 11465
Description: Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
climmpt.2  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
Assertion
Ref Expression
climmpt  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    A, k    k, F    k, Z
Allowed substitution hints:    G( k)    M( k)    V( k)

Proof of Theorem climmpt
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 simpr 110 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
3 climmpt.2 . . . 4  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
4 uzf 9604 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
54ffvelcdmi 5696 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  e. 
~P ZZ )
6 elex 2774 . . . . . . 7  |-  ( (
ZZ>= `  M )  e. 
~P ZZ  ->  ( ZZ>=
`  M )  e. 
_V )
75, 6syl 14 . . . . . 6  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  e. 
_V )
81, 7eqeltrid 2283 . . . . 5  |-  ( M  e.  ZZ  ->  Z  e.  _V )
9 mptexg 5787 . . . . 5  |-  ( Z  e.  _V  ->  (
k  e.  Z  |->  ( F `  k ) )  e.  _V )
108, 9syl 14 . . . 4  |-  ( M  e.  ZZ  ->  (
k  e.  Z  |->  ( F `  k ) )  e.  _V )
113, 10eqeltrid 2283 . . 3  |-  ( M  e.  ZZ  ->  G  e.  _V )
1211adantr 276 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  G  e.  _V )
13 simpl 109 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  M  e.  ZZ )
14 simpr 110 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  m  e.  Z )
15 fvexg 5577 . . . . 5  |-  ( ( F  e.  V  /\  m  e.  Z )  ->  ( F `  m
)  e.  _V )
1615adantll 476 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( F `  m )  e.  _V )
17 fveq2 5558 . . . . 5  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
1817, 3fvmptg 5637 . . . 4  |-  ( ( m  e.  Z  /\  ( F `  m )  e.  _V )  -> 
( G `  m
)  =  ( F `
 m ) )
1914, 16, 18syl2anc 411 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( G `  m )  =  ( F `  m ) )
2019eqcomd 2202 . 2  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( F `  m )  =  ( G `  m ) )
211, 2, 12, 13, 20climeq 11464 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   ~Pcpw 3605   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258   ZZcz 9326   ZZ>=cuz 9601    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-clim 11444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator