ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climmpt Unicode version

Theorem climmpt 11726
Description: Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
climmpt.2  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
Assertion
Ref Expression
climmpt  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    A, k    k, F    k, Z
Allowed substitution hints:    G( k)    M( k)    V( k)

Proof of Theorem climmpt
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 simpr 110 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
3 climmpt.2 . . . 4  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
4 uzf 9686 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
54ffvelcdmi 5737 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  e. 
~P ZZ )
6 elex 2788 . . . . . . 7  |-  ( (
ZZ>= `  M )  e. 
~P ZZ  ->  ( ZZ>=
`  M )  e. 
_V )
75, 6syl 14 . . . . . 6  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  e. 
_V )
81, 7eqeltrid 2294 . . . . 5  |-  ( M  e.  ZZ  ->  Z  e.  _V )
9 mptexg 5832 . . . . 5  |-  ( Z  e.  _V  ->  (
k  e.  Z  |->  ( F `  k ) )  e.  _V )
108, 9syl 14 . . . 4  |-  ( M  e.  ZZ  ->  (
k  e.  Z  |->  ( F `  k ) )  e.  _V )
113, 10eqeltrid 2294 . . 3  |-  ( M  e.  ZZ  ->  G  e.  _V )
1211adantr 276 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  G  e.  _V )
13 simpl 109 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  M  e.  ZZ )
14 simpr 110 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  m  e.  Z )
15 fvexg 5618 . . . . 5  |-  ( ( F  e.  V  /\  m  e.  Z )  ->  ( F `  m
)  e.  _V )
1615adantll 476 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( F `  m )  e.  _V )
17 fveq2 5599 . . . . 5  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
1817, 3fvmptg 5678 . . . 4  |-  ( ( m  e.  Z  /\  ( F `  m )  e.  _V )  -> 
( G `  m
)  =  ( F `
 m ) )
1914, 16, 18syl2anc 411 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( G `  m )  =  ( F `  m ) )
2019eqcomd 2213 . 2  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( F `  m )  =  ( G `  m ) )
211, 2, 12, 13, 20climeq 11725 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776   ~Pcpw 3626   class class class wbr 4059    |-> cmpt 4121   ` cfv 5290   ZZcz 9407   ZZ>=cuz 9683    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-clim 11705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator