ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climmpt Unicode version

Theorem climmpt 10955
Description: Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
climmpt.2  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
Assertion
Ref Expression
climmpt  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    A, k    k, F    k, Z
Allowed substitution hints:    G( k)    M( k)    V( k)

Proof of Theorem climmpt
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 simpr 109 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
3 climmpt.2 . . . 4  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
4 uzf 9225 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
54ffvelrni 5506 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  e. 
~P ZZ )
6 elex 2666 . . . . . . 7  |-  ( (
ZZ>= `  M )  e. 
~P ZZ  ->  ( ZZ>=
`  M )  e. 
_V )
75, 6syl 14 . . . . . 6  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  e. 
_V )
81, 7syl5eqel 2199 . . . . 5  |-  ( M  e.  ZZ  ->  Z  e.  _V )
9 mptexg 5597 . . . . 5  |-  ( Z  e.  _V  ->  (
k  e.  Z  |->  ( F `  k ) )  e.  _V )
108, 9syl 14 . . . 4  |-  ( M  e.  ZZ  ->  (
k  e.  Z  |->  ( F `  k ) )  e.  _V )
113, 10syl5eqel 2199 . . 3  |-  ( M  e.  ZZ  ->  G  e.  _V )
1211adantr 272 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  G  e.  _V )
13 simpl 108 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  M  e.  ZZ )
14 simpr 109 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  m  e.  Z )
15 fvexg 5392 . . . . 5  |-  ( ( F  e.  V  /\  m  e.  Z )  ->  ( F `  m
)  e.  _V )
1615adantll 465 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( F `  m )  e.  _V )
17 fveq2 5373 . . . . 5  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
1817, 3fvmptg 5449 . . . 4  |-  ( ( m  e.  Z  /\  ( F `  m )  e.  _V )  -> 
( G `  m
)  =  ( F `
 m ) )
1914, 16, 18syl2anc 406 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( G `  m )  =  ( F `  m ) )
2019eqcomd 2118 . 2  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( F `  m )  =  ( G `  m ) )
211, 2, 12, 13, 20climeq 10954 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461   _Vcvv 2655   ~Pcpw 3474   class class class wbr 3893    |-> cmpt 3947   ` cfv 5079   ZZcz 8952   ZZ>=cuz 9222    ~~> cli 10933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-clim 10934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator