ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1lem Unicode version

Theorem climcn1lem 11081
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climcn1lem.1  |-  Z  =  ( ZZ>= `  M )
climcn1lem.2  |-  ( ph  ->  F  ~~>  A )
climcn1lem.4  |-  ( ph  ->  G  e.  W )
climcn1lem.5  |-  ( ph  ->  M  e.  ZZ )
climcn1lem.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climcn1lem.7  |-  H : CC
--> CC
climcn1lem.8  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
climcn1lem.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( H `  ( F `  k ) ) )
Assertion
Ref Expression
climcn1lem  |-  ( ph  ->  G  ~~>  ( H `  A ) )
Distinct variable groups:    x, k, y, z, A    k, F, y, z    k, G, x    ph, k, x, y, z   
k, Z, y    k, H, x, y, z    k, M
Allowed substitution hints:    F( x)    G( y, z)    M( x, y, z)    W( x, y, z, k)    Z( x, z)

Proof of Theorem climcn1lem
StepHypRef Expression
1 climcn1lem.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climcn1lem.5 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climcn1lem.2 . . 3  |-  ( ph  ->  F  ~~>  A )
4 climcl 11044 . . 3  |-  ( F  ~~>  A  ->  A  e.  CC )
53, 4syl 14 . 2  |-  ( ph  ->  A  e.  CC )
6 climcn1lem.7 . . . 4  |-  H : CC
--> CC
76ffvelrni 5547 . . 3  |-  ( z  e.  CC  ->  ( H `  z )  e.  CC )
87adantl 275 . 2  |-  ( (
ph  /\  z  e.  CC )  ->  ( H `
 z )  e.  CC )
9 climcn1lem.4 . 2  |-  ( ph  ->  G  e.  W )
10 climcn1lem.8 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
115, 10sylan 281 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
12 climcn1lem.6 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
13 climcn1lem.9 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( H `  ( F `  k ) ) )
141, 2, 5, 8, 3, 9, 11, 12, 13climcn1 11070 1  |-  ( ph  ->  G  ~~>  ( H `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   class class class wbr 3924   -->wf 5114   ` cfv 5118  (class class class)co 5767   CCcc 7611    < clt 7793    - cmin 7926   ZZcz 9047   ZZ>=cuz 9319   RR+crp 9434   abscabs 10762    ~~> cli 11040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-clim 11041
This theorem is referenced by:  climabs  11082  climcj  11083  climre  11084  climim  11085
  Copyright terms: Public domain W3C validator