ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1lem Unicode version

Theorem climcn1lem 11120
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climcn1lem.1  |-  Z  =  ( ZZ>= `  M )
climcn1lem.2  |-  ( ph  ->  F  ~~>  A )
climcn1lem.4  |-  ( ph  ->  G  e.  W )
climcn1lem.5  |-  ( ph  ->  M  e.  ZZ )
climcn1lem.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climcn1lem.7  |-  H : CC
--> CC
climcn1lem.8  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
climcn1lem.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( H `  ( F `  k ) ) )
Assertion
Ref Expression
climcn1lem  |-  ( ph  ->  G  ~~>  ( H `  A ) )
Distinct variable groups:    x, k, y, z, A    k, F, y, z    k, G, x    ph, k, x, y, z   
k, Z, y    k, H, x, y, z    k, M
Allowed substitution hints:    F( x)    G( y, z)    M( x, y, z)    W( x, y, z, k)    Z( x, z)

Proof of Theorem climcn1lem
StepHypRef Expression
1 climcn1lem.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climcn1lem.5 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climcn1lem.2 . . 3  |-  ( ph  ->  F  ~~>  A )
4 climcl 11083 . . 3  |-  ( F  ~~>  A  ->  A  e.  CC )
53, 4syl 14 . 2  |-  ( ph  ->  A  e.  CC )
6 climcn1lem.7 . . . 4  |-  H : CC
--> CC
76ffvelrni 5562 . . 3  |-  ( z  e.  CC  ->  ( H `  z )  e.  CC )
87adantl 275 . 2  |-  ( (
ph  /\  z  e.  CC )  ->  ( H `
 z )  e.  CC )
9 climcn1lem.4 . 2  |-  ( ph  ->  G  e.  W )
10 climcn1lem.8 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
115, 10sylan 281 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
12 climcn1lem.6 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
13 climcn1lem.9 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( H `  ( F `  k ) ) )
141, 2, 5, 8, 3, 9, 11, 12, 13climcn1 11109 1  |-  ( ph  ->  G  ~~>  ( H `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   CCcc 7642    < clt 7824    - cmin 7957   ZZcz 9078   ZZ>=cuz 9350   RR+crp 9470   abscabs 10801    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-clim 11080
This theorem is referenced by:  climabs  11121  climcj  11122  climre  11123  climim  11124
  Copyright terms: Public domain W3C validator