ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgb Unicode version

Theorem algcvgb 12020
Description: Two ways of expressing that  C is a countdown function for algorithm  F. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
algcvgb.1  |-  F : S
--> S
algcvgb.2  |-  C : S
--> NN0
Assertion
Ref Expression
algcvgb  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )

Proof of Theorem algcvgb
StepHypRef Expression
1 algcvgb.2 . . 3  |-  C : S
--> NN0
21ffvelcdmi 5645 . 2  |-  ( X  e.  S  ->  ( C `  X )  e.  NN0 )
3 algcvgb.1 . . . 4  |-  F : S
--> S
43ffvelcdmi 5645 . . 3  |-  ( X  e.  S  ->  ( F `  X )  e.  S )
51ffvelcdmi 5645 . . 3  |-  ( ( F `  X )  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
64, 5syl 14 . 2  |-  ( X  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
7 algcvgblem 12019 . 2  |-  ( ( ( C `  X
)  e.  NN0  /\  ( C `  ( F `
 X ) )  e.  NN0 )  -> 
( ( ( C `
 ( F `  X ) )  =/=  0  ->  ( C `  ( F `  X
) )  <  ( C `  X )
)  <->  ( ( ( C `  X )  =/=  0  ->  ( C `  ( F `  X ) )  < 
( C `  X
) )  /\  (
( C `  X
)  =  0  -> 
( C `  ( F `  X )
)  =  0 ) ) ) )
82, 6, 7syl2anc 411 1  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4000   -->wf 5207   ` cfv 5211   0cc0 7789    < clt 7969   NN0cn0 9152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-addcom 7889  ax-addass 7891  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-0id 7897  ax-rnegex 7898  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-apti 7904  ax-pre-ltadd 7905
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4289  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-inn 8896  df-n0 9153  df-z 9230
This theorem is referenced by:  algcvga  12021
  Copyright terms: Public domain W3C validator