ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgb Unicode version

Theorem algcvgb 12447
Description: Two ways of expressing that  C is a countdown function for algorithm  F. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
algcvgb.1  |-  F : S
--> S
algcvgb.2  |-  C : S
--> NN0
Assertion
Ref Expression
algcvgb  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )

Proof of Theorem algcvgb
StepHypRef Expression
1 algcvgb.2 . . 3  |-  C : S
--> NN0
21ffvelcdmi 5727 . 2  |-  ( X  e.  S  ->  ( C `  X )  e.  NN0 )
3 algcvgb.1 . . . 4  |-  F : S
--> S
43ffvelcdmi 5727 . . 3  |-  ( X  e.  S  ->  ( F `  X )  e.  S )
51ffvelcdmi 5727 . . 3  |-  ( ( F `  X )  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
64, 5syl 14 . 2  |-  ( X  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
7 algcvgblem 12446 . 2  |-  ( ( ( C `  X
)  e.  NN0  /\  ( C `  ( F `
 X ) )  e.  NN0 )  -> 
( ( ( C `
 ( F `  X ) )  =/=  0  ->  ( C `  ( F `  X
) )  <  ( C `  X )
)  <->  ( ( ( C `  X )  =/=  0  ->  ( C `  ( F `  X ) )  < 
( C `  X
) )  /\  (
( C `  X
)  =  0  -> 
( C `  ( F `  X )
)  =  0 ) ) ) )
82, 6, 7syl2anc 411 1  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    =/= wne 2377   class class class wbr 4051   -->wf 5276   ` cfv 5280   0cc0 7945    < clt 8127   NN0cn0 9315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393
This theorem is referenced by:  algcvga  12448
  Copyright terms: Public domain W3C validator