ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgb Unicode version

Theorem algcvgb 12291
Description: Two ways of expressing that  C is a countdown function for algorithm  F. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
algcvgb.1  |-  F : S
--> S
algcvgb.2  |-  C : S
--> NN0
Assertion
Ref Expression
algcvgb  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )

Proof of Theorem algcvgb
StepHypRef Expression
1 algcvgb.2 . . 3  |-  C : S
--> NN0
21ffvelcdmi 5708 . 2  |-  ( X  e.  S  ->  ( C `  X )  e.  NN0 )
3 algcvgb.1 . . . 4  |-  F : S
--> S
43ffvelcdmi 5708 . . 3  |-  ( X  e.  S  ->  ( F `  X )  e.  S )
51ffvelcdmi 5708 . . 3  |-  ( ( F `  X )  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
64, 5syl 14 . 2  |-  ( X  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
7 algcvgblem 12290 . 2  |-  ( ( ( C `  X
)  e.  NN0  /\  ( C `  ( F `
 X ) )  e.  NN0 )  -> 
( ( ( C `
 ( F `  X ) )  =/=  0  ->  ( C `  ( F `  X
) )  <  ( C `  X )
)  <->  ( ( ( C `  X )  =/=  0  ->  ( C `  ( F `  X ) )  < 
( C `  X
) )  /\  (
( C `  X
)  =  0  -> 
( C `  ( F `  X )
)  =  0 ) ) ) )
82, 6, 7syl2anc 411 1  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175    =/= wne 2375   class class class wbr 4043   -->wf 5264   ` cfv 5268   0cc0 7907    < clt 8089   NN0cn0 9277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355
This theorem is referenced by:  algcvga  12292
  Copyright terms: Public domain W3C validator