ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgb Unicode version

Theorem algcvgb 11961
Description: Two ways of expressing that  C is a countdown function for algorithm  F. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
algcvgb.1  |-  F : S
--> S
algcvgb.2  |-  C : S
--> NN0
Assertion
Ref Expression
algcvgb  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )

Proof of Theorem algcvgb
StepHypRef Expression
1 algcvgb.2 . . 3  |-  C : S
--> NN0
21ffvelrni 5613 . 2  |-  ( X  e.  S  ->  ( C `  X )  e.  NN0 )
3 algcvgb.1 . . . 4  |-  F : S
--> S
43ffvelrni 5613 . . 3  |-  ( X  e.  S  ->  ( F `  X )  e.  S )
51ffvelrni 5613 . . 3  |-  ( ( F `  X )  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
64, 5syl 14 . 2  |-  ( X  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
7 algcvgblem 11960 . 2  |-  ( ( ( C `  X
)  e.  NN0  /\  ( C `  ( F `
 X ) )  e.  NN0 )  -> 
( ( ( C `
 ( F `  X ) )  =/=  0  ->  ( C `  ( F `  X
) )  <  ( C `  X )
)  <->  ( ( ( C `  X )  =/=  0  ->  ( C `  ( F `  X ) )  < 
( C `  X
) )  /\  (
( C `  X
)  =  0  -> 
( C `  ( F `  X )
)  =  0 ) ) ) )
82, 6, 7syl2anc 409 1  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135    =/= wne 2334   class class class wbr 3976   -->wf 5178   ` cfv 5182   0cc0 7744    < clt 7924   NN0cn0 9105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183
This theorem is referenced by:  algcvga  11962
  Copyright terms: Public domain W3C validator