ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelrni Unicode version

Theorem ffvelrni 5547
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
Hypothesis
Ref Expression
ffvrni.1  |-  F : A
--> B
Assertion
Ref Expression
ffvelrni  |-  ( C  e.  A  ->  ( F `  C )  e.  B )

Proof of Theorem ffvelrni
StepHypRef Expression
1 ffvrni.1 . 2  |-  F : A
--> B
2 ffvelrn 5546 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F `  C
)  e.  B )
31, 2mpan 420 1  |-  ( C  e.  A  ->  ( F `  C )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480   -->wf 5114   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126
This theorem is referenced by:  omgadd  10541  cjcl  10613  climmpt  11062  cn1lem  11076  climcn1lem  11081  fsumrelem  11233  efcl  11359  sincl  11402  coscl  11403  algcvg  11718  algcvgb  11720  algcvga  11721  algfx  11722  eucalgcvga  11728  eucalg  11729  sqpweven  11842  2sqpwodd  11843  ennnfonelemnn0  11924  nninfomnilem  13203
  Copyright terms: Public domain W3C validator