Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffvelrni | Unicode version |
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
Ref | Expression |
---|---|
ffvrni.1 |
Ref | Expression |
---|---|
ffvelrni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvrni.1 | . 2 | |
2 | ffvelrn 5615 | . 2 | |
3 | 1, 2 | mpan 421 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2135 wf 5181 cfv 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2726 df-sbc 2950 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-id 4268 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-fv 5193 |
This theorem is referenced by: omgadd 10709 cjcl 10784 climmpt 11235 cn1lem 11249 climcn1lem 11254 fsumrelem 11406 efcl 11599 sincl 11641 coscl 11642 algcvg 11974 algcvgb 11976 algcvga 11977 algfx 11978 eucalgcvga 11984 eucalg 11985 sqpweven 12101 2sqpwodd 12102 ennnfonelemnn0 12349 relogcl 13381 nninfomnilem 13791 |
Copyright terms: Public domain | W3C validator |