ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelrni GIF version

Theorem ffvelrni 5433
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
Hypothesis
Ref Expression
ffvrni.1 𝐹:𝐴𝐵
Assertion
Ref Expression
ffvelrni (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem ffvelrni
StepHypRef Expression
1 ffvrni.1 . 2 𝐹:𝐴𝐵
2 ffvelrn 5432 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
31, 2mpan 415 1 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1438  wf 5011  cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023
This theorem is referenced by:  omgadd  10210  cjcl  10282  climmpt  10688  cn1lem  10702  climcn1lem  10707  fsumrelem  10865  efcl  10954  sincl  10997  coscl  10998  ialgcvg  11308  algcvgb  11310  ialgcvga  11311  ialgfx  11312  eucialgcvga  11318  eucialg  11319  sqpweven  11431  2sqpwodd  11432  nninfomnilem  11910
  Copyright terms: Public domain W3C validator