![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffvelrni | GIF version |
Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
Ref | Expression |
---|---|
ffvrni.1 | ⊢ 𝐹:𝐴⟶𝐵 |
Ref | Expression |
---|---|
ffvelrni | ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvrni.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | ffvelrn 5432 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) | |
3 | 1, 2 | mpan 415 | 1 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 ⟶wf 5011 ‘cfv 5015 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 |
This theorem is referenced by: omgadd 10210 cjcl 10282 climmpt 10688 cn1lem 10702 climcn1lem 10707 fsumrelem 10865 efcl 10954 sincl 10997 coscl 10998 ialgcvg 11308 algcvgb 11310 ialgcvga 11311 ialgfx 11312 eucialgcvga 11318 eucialg 11319 sqpweven 11431 2sqpwodd 11432 nninfomnilem 11910 |
Copyright terms: Public domain | W3C validator |