ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelrn Unicode version

Theorem ffvelrn 5432
Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
Assertion
Ref Expression
ffvelrn  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F `  C
)  e.  B )

Proof of Theorem ffvelrn
StepHypRef Expression
1 ffn 5161 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 fnfvelrn 5431 . . 3  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  ( F `  C
)  e.  ran  F
)
31, 2sylan 277 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F `  C
)  e.  ran  F
)
4 frn 5169 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
54sseld 3024 . . 3  |-  ( F : A --> B  -> 
( ( F `  C )  e.  ran  F  ->  ( F `  C )  e.  B
) )
65adantr 270 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( ( F `  C )  e.  ran  F  ->  ( F `  C )  e.  B
) )
73, 6mpd 13 1  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F `  C
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1438   ran crn 4439    Fn wfn 5010   -->wf 5011   ` cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023
This theorem is referenced by:  ffvelrni  5433  ffvelrnda  5434  dffo3  5446  ffnfv  5456  ffvresb  5461  fcompt  5467  fsn2  5471  fvconst  5485  foco2  5533  fcofo  5563  cocan1  5566  isocnv  5590  isores2  5592  isopolem  5601  isosolem  5603  fovrn  5787  off  5868  mapsncnv  6450  2dom  6520  enm  6534  xpdom2  6545  xpmapenlem  6563  fiintim  6637  isotilem  6699  updjudhf  6768  exmidomniim  6795  shftf  10260  isummolem2a  10767  isumcl  10815  mertenslem2  10926  nn0seqcvgd  11297  eucialg  11315  phimullem  11475
  Copyright terms: Public domain W3C validator