| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fict | GIF version | ||
| Description: A finite set is dominated by ω. Also see finct 7200. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| Ref | Expression |
|---|---|
| fict | ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6838 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | simprr 531 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
| 4 | omex 4639 | . . . . 5 ⊢ ω ∈ V | |
| 5 | ordom 4653 | . . . . . 6 ⊢ Ord ω | |
| 6 | ordelss 4424 | . . . . . 6 ⊢ ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) | |
| 7 | 5, 6 | mpan 424 | . . . . 5 ⊢ (𝑛 ∈ ω → 𝑛 ⊆ ω) |
| 8 | ssdomg 6855 | . . . . 5 ⊢ (ω ∈ V → (𝑛 ⊆ ω → 𝑛 ≼ ω)) | |
| 9 | 4, 7, 8 | mpsyl 65 | . . . 4 ⊢ (𝑛 ∈ ω → 𝑛 ≼ ω) |
| 10 | 9 | ad2antrl 490 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≼ ω) |
| 11 | endomtr 6867 | . . 3 ⊢ ((𝐴 ≈ 𝑛 ∧ 𝑛 ≼ ω) → 𝐴 ≼ ω) | |
| 12 | 3, 10, 11 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≼ ω) |
| 13 | 2, 12 | rexlimddv 2627 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ∃wrex 2484 Vcvv 2771 ⊆ wss 3165 class class class wbr 4043 Ord word 4407 ωcom 4636 ≈ cen 6815 ≼ cdom 6816 Fincfn 6817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4338 df-iord 4411 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-en 6818 df-dom 6819 df-fin 6820 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |