Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fict | GIF version |
Description: A finite set is dominated by ω. Also see finct 7105. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
Ref | Expression |
---|---|
fict | ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6751 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | simprr 531 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
4 | omex 4586 | . . . . 5 ⊢ ω ∈ V | |
5 | ordom 4600 | . . . . . 6 ⊢ Ord ω | |
6 | ordelss 4373 | . . . . . 6 ⊢ ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) | |
7 | 5, 6 | mpan 424 | . . . . 5 ⊢ (𝑛 ∈ ω → 𝑛 ⊆ ω) |
8 | ssdomg 6768 | . . . . 5 ⊢ (ω ∈ V → (𝑛 ⊆ ω → 𝑛 ≼ ω)) | |
9 | 4, 7, 8 | mpsyl 65 | . . . 4 ⊢ (𝑛 ∈ ω → 𝑛 ≼ ω) |
10 | 9 | ad2antrl 490 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≼ ω) |
11 | endomtr 6780 | . . 3 ⊢ ((𝐴 ≈ 𝑛 ∧ 𝑛 ≼ ω) → 𝐴 ≼ ω) | |
12 | 3, 10, 11 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≼ ω) |
13 | 2, 12 | rexlimddv 2597 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 ∃wrex 2454 Vcvv 2735 ⊆ wss 3127 class class class wbr 3998 Ord word 4356 ωcom 4583 ≈ cen 6728 ≼ cdom 6729 Fincfn 6730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-tr 4097 df-id 4287 df-iord 4360 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-en 6731 df-dom 6732 df-fin 6733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |