ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fict GIF version

Theorem fict 6947
Description: A finite set is dominated by ω. Also see finct 7200. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
fict (𝐴 ∈ Fin → 𝐴 ≼ ω)

Proof of Theorem fict
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 isfi 6838 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simprr 531 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
4 omex 4639 . . . . 5 ω ∈ V
5 ordom 4653 . . . . . 6 Ord ω
6 ordelss 4424 . . . . . 6 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
75, 6mpan 424 . . . . 5 (𝑛 ∈ ω → 𝑛 ⊆ ω)
8 ssdomg 6855 . . . . 5 (ω ∈ V → (𝑛 ⊆ ω → 𝑛 ≼ ω))
94, 7, 8mpsyl 65 . . . 4 (𝑛 ∈ ω → 𝑛 ≼ ω)
109ad2antrl 490 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ≼ ω)
11 endomtr 6867 . . 3 ((𝐴𝑛𝑛 ≼ ω) → 𝐴 ≼ ω)
123, 10, 11syl2anc 411 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴 ≼ ω)
132, 12rexlimddv 2627 1 (𝐴 ∈ Fin → 𝐴 ≼ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wrex 2484  Vcvv 2771  wss 3165   class class class wbr 4043  Ord word 4407  ωcom 4636  cen 6815  cdom 6816  Fincfn 6817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-tr 4142  df-id 4338  df-iord 4411  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-en 6818  df-dom 6819  df-fin 6820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator