| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fict | GIF version | ||
| Description: A finite set is dominated by ω. Also see finct 7233. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| Ref | Expression |
|---|---|
| fict | ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6865 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | simprr 531 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
| 4 | omex 4649 | . . . . 5 ⊢ ω ∈ V | |
| 5 | ordom 4663 | . . . . . 6 ⊢ Ord ω | |
| 6 | ordelss 4434 | . . . . . 6 ⊢ ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) | |
| 7 | 5, 6 | mpan 424 | . . . . 5 ⊢ (𝑛 ∈ ω → 𝑛 ⊆ ω) |
| 8 | ssdomg 6883 | . . . . 5 ⊢ (ω ∈ V → (𝑛 ⊆ ω → 𝑛 ≼ ω)) | |
| 9 | 4, 7, 8 | mpsyl 65 | . . . 4 ⊢ (𝑛 ∈ ω → 𝑛 ≼ ω) |
| 10 | 9 | ad2antrl 490 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≼ ω) |
| 11 | endomtr 6895 | . . 3 ⊢ ((𝐴 ≈ 𝑛 ∧ 𝑛 ≼ ω) → 𝐴 ≼ ω) | |
| 12 | 3, 10, 11 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≼ ω) |
| 13 | 2, 12 | rexlimddv 2629 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 ⊆ wss 3170 class class class wbr 4051 Ord word 4417 ωcom 4646 ≈ cen 6838 ≼ cdom 6839 Fincfn 6840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-en 6841 df-dom 6842 df-fin 6843 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |