ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fict GIF version

Theorem fict 6768
Description: A finite set is dominated by ω. Also see finct 7007. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
fict (𝐴 ∈ Fin → 𝐴 ≼ ω)

Proof of Theorem fict
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 isfi 6661 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simprr 522 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
4 omex 4513 . . . . 5 ω ∈ V
5 ordom 4526 . . . . . 6 Ord ω
6 ordelss 4307 . . . . . 6 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
75, 6mpan 421 . . . . 5 (𝑛 ∈ ω → 𝑛 ⊆ ω)
8 ssdomg 6678 . . . . 5 (ω ∈ V → (𝑛 ⊆ ω → 𝑛 ≼ ω))
94, 7, 8mpsyl 65 . . . 4 (𝑛 ∈ ω → 𝑛 ≼ ω)
109ad2antrl 482 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ≼ ω)
11 endomtr 6690 . . 3 ((𝐴𝑛𝑛 ≼ ω) → 𝐴 ≼ ω)
123, 10, 11syl2anc 409 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴 ≼ ω)
132, 12rexlimddv 2557 1 (𝐴 ∈ Fin → 𝐴 ≼ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1481  wrex 2418  Vcvv 2689  wss 3074   class class class wbr 3935  Ord word 4290  ωcom 4510  cen 6638  cdom 6639  Fincfn 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-iinf 4508
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-br 3936  df-opab 3996  df-tr 4033  df-id 4221  df-iord 4294  df-suc 4299  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-en 6641  df-dom 6642  df-fin 6643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator