![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fict | GIF version |
Description: A finite set is dominated by ω. Also see finct 6915. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
Ref | Expression |
---|---|
fict | ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6585 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | simprr 502 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
4 | omex 4445 | . . . . 5 ⊢ ω ∈ V | |
5 | ordom 4458 | . . . . . 6 ⊢ Ord ω | |
6 | ordelss 4239 | . . . . . 6 ⊢ ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) | |
7 | 5, 6 | mpan 418 | . . . . 5 ⊢ (𝑛 ∈ ω → 𝑛 ⊆ ω) |
8 | ssdomg 6602 | . . . . 5 ⊢ (ω ∈ V → (𝑛 ⊆ ω → 𝑛 ≼ ω)) | |
9 | 4, 7, 8 | mpsyl 65 | . . . 4 ⊢ (𝑛 ∈ ω → 𝑛 ≼ ω) |
10 | 9 | ad2antrl 477 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≼ ω) |
11 | endomtr 6614 | . . 3 ⊢ ((𝐴 ≈ 𝑛 ∧ 𝑛 ≼ ω) → 𝐴 ≼ ω) | |
12 | 3, 10, 11 | syl2anc 406 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≼ ω) |
13 | 2, 12 | rexlimddv 2513 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1448 ∃wrex 2376 Vcvv 2641 ⊆ wss 3021 class class class wbr 3875 Ord word 4222 ωcom 4442 ≈ cen 6562 ≼ cdom 6563 Fincfn 6564 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-tr 3967 df-id 4153 df-iord 4226 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-en 6565 df-dom 6566 df-fin 6567 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |