ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fict GIF version

Theorem fict 6868
Description: A finite set is dominated by ω. Also see finct 7115. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
fict (𝐴 ∈ Fin → 𝐴 ≼ ω)

Proof of Theorem fict
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 isfi 6761 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simprr 531 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
4 omex 4593 . . . . 5 ω ∈ V
5 ordom 4607 . . . . . 6 Ord ω
6 ordelss 4380 . . . . . 6 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
75, 6mpan 424 . . . . 5 (𝑛 ∈ ω → 𝑛 ⊆ ω)
8 ssdomg 6778 . . . . 5 (ω ∈ V → (𝑛 ⊆ ω → 𝑛 ≼ ω))
94, 7, 8mpsyl 65 . . . 4 (𝑛 ∈ ω → 𝑛 ≼ ω)
109ad2antrl 490 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ≼ ω)
11 endomtr 6790 . . 3 ((𝐴𝑛𝑛 ≼ ω) → 𝐴 ≼ ω)
123, 10, 11syl2anc 411 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴 ≼ ω)
132, 12rexlimddv 2599 1 (𝐴 ∈ Fin → 𝐴 ≼ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wrex 2456  Vcvv 2738  wss 3130   class class class wbr 4004  Ord word 4363  ωcom 4590  cen 6738  cdom 6739  Fincfn 6740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-tr 4103  df-id 4294  df-iord 4367  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-en 6741  df-dom 6742  df-fin 6743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator