ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenum GIF version

Theorem fidcenum 7119
Description: A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenum (𝐴 ∈ Fin ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
Distinct variable group:   𝐴,𝑓,𝑛,𝑥,𝑦

Proof of Theorem fidcenum
StepHypRef Expression
1 fidcenumlemim 7115 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
2 simpll 527 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) ∧ 𝑓:𝑛onto𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3 simpr 110 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) ∧ 𝑓:𝑛onto𝐴) → 𝑓:𝑛onto𝐴)
4 simplr 528 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) ∧ 𝑓:𝑛onto𝐴) → 𝑛 ∈ ω)
52, 3, 4fidcenumlemr 7118 . . . . . 6 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) ∧ 𝑓:𝑛onto𝐴) → 𝐴 ∈ Fin)
65ex 115 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) → (𝑓:𝑛onto𝐴𝐴 ∈ Fin))
76exlimdv 1865 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) → (∃𝑓 𝑓:𝑛onto𝐴𝐴 ∈ Fin))
87rexlimdva 2648 . . 3 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴𝐴 ∈ Fin))
98imp 124 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴) → 𝐴 ∈ Fin)
101, 9impbii 126 1 (𝐴 ∈ Fin ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 839  wex 1538  wcel 2200  wral 2508  wrex 2509  ωcom 4681  ontowfo 5315  Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  finct  7279  ctinf  12996
  Copyright terms: Public domain W3C validator