ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenum GIF version

Theorem fidcenum 6985
Description: A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenum (𝐴 ∈ Fin ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
Distinct variable group:   𝐴,𝑓,𝑛,𝑥,𝑦

Proof of Theorem fidcenum
StepHypRef Expression
1 fidcenumlemim 6981 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
2 simpll 527 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) ∧ 𝑓:𝑛onto𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3 simpr 110 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) ∧ 𝑓:𝑛onto𝐴) → 𝑓:𝑛onto𝐴)
4 simplr 528 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) ∧ 𝑓:𝑛onto𝐴) → 𝑛 ∈ ω)
52, 3, 4fidcenumlemr 6984 . . . . . 6 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) ∧ 𝑓:𝑛onto𝐴) → 𝐴 ∈ Fin)
65ex 115 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) → (𝑓:𝑛onto𝐴𝐴 ∈ Fin))
76exlimdv 1830 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑛 ∈ ω) → (∃𝑓 𝑓:𝑛onto𝐴𝐴 ∈ Fin))
87rexlimdva 2607 . . 3 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴𝐴 ∈ Fin))
98imp 124 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴) → 𝐴 ∈ Fin)
101, 9impbii 126 1 (𝐴 ∈ Fin ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 835  wex 1503  wcel 2160  wral 2468  wrex 2469  ωcom 4607  ontowfo 5233  Fincfn 6766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-1o 6441  df-er 6559  df-en 6767  df-fin 6769
This theorem is referenced by:  finct  7145  ctinf  12481
  Copyright terms: Public domain W3C validator